Análise comparativa de classificadores digitais em imagens do Landsat‑8 aplicados ao mapeamento temático

Danilo Francisco Trovo Garofalo, Cassiano Gustavo Messias, Veraldo Liesenberg, Édson Luis Bolfe, Marcos César Ferreira

Resumo


O objetivo deste trabalho foi avaliar o desempenho dos classificadores digitais SVM e K‑NN para a classificação orientada a objeto em imagens Landsat‑8, aplicados ao mapeamento de uso e cobertura do solo da Alta Bacia do Rio Piracicaba‑Jaguari, MG. A etapa de pré‑processamento contou com a conversão radiométrica e a minimização dos efeitos atmosféricos. Em seguida, foi feita a fusão das bandas multiespectrais (30 m) com a banda pancromática (15 m). Com base em composições RGB e inspeções de campo, definiram-se 15 classes de uso e cobertura do solo. Para a segmentação de bordas, aplicaram-se os limiares 10 e 60 para as configurações de segmentação e união no aplicativo ENVI. A classificação foi feita usando SVM e K‑NN. Ambos os classificadores apresentaram elevados valores de índice Kappa (k): 0,92 para SVM e 0,86 para K‑NN, significativamente diferentes entre si a 95% de probabilidade. Uma significativa melhoria foi observada para SVM, na classificação correta de diferentes tipologias florestais. A classificação orientada a objetos é amplamente aplicada em imagens de alta resolução espacial; no entanto, os resultados obtidos no presente trabalho mostram a robustez do método também para imagens de média resolução espacial.

Palavras-chave


classificação orientada a objetos; gestão territorial; sensoriamento remoto; resolução espacial; uso e cobertura do solo

Texto completo:

PDF


Embrapa Sede, Gerência-Geral de Governança Corporativa e Informação,

Parque Estação Biológica - PqEB - Av. W3 Norte (final) Caixa Postal 040315 - Brasília, DF - Brasil - 70770-901
Fone: +55 (61) 3448-2461