Classificação orientada a objeto em associação às ferramentas reflectância acumulada e mineração de dados
Resumo
O objetivo deste trabalho foi utilizar as técnicas de reflectância acumulada e mineração de dados, seguidas por classificação orientada a objeto, em imagens do sensor Operational Land Imager (OLI), satélite Landsat 8, para a classificação de vegetação nativa e cobertura agropecuária do Cerrado. Quatro imagens de reflectância foram utilizadas para a discriminação de seis classes – agricultura, pecuária, campo limpo úmido, savana, floresta e campo –, para a classificação do Parque Nacional das Emas, no Estado de Goiás, e adjacências. As imagens foram segmentadas para a extração de atributos espectrais de amostras e a aplicação de combinações de atributos (média + moda, todos os atributos) na mineração de dados. O programa Weka foi utilizado para a construção das árvores de decisão. Essa metodologia indicou que a diferenciação entre alvos aumentou a partir da acumulação temporal da reflectância, em todas as bandas e as classes, e a melhor imagem foi aquela do somatório das quatro datas. A classificação baseada na associação de atributos média + moda não apresentou impedimentos no processamento das regras de decisão, diferentemente da associação de todos os atributos. A classificação média + moda apresentou acurácia satisfatória (exatidão global, 69%; Kappa, 58%; e TAU, 63%). A integração dessas técnicas apresenta potencial para a diferenciação de vegetação nativa e antrópica do Cerrado.
Palavras-chave
Texto completo:
PDFEmbrapa Sede, Gerência-Geral de Governança Corporativa e Informação,
Parque Estação Biológica - PqEB - Av. W3 Norte (final) Caixa Postal 040315 - Brasília, DF - Brasil - 70770-901
Fone: +55 (61) 3448-2461