Mapeamento digital de areia, argila e carbono orgânico por modelos Random Forest sob diferentes resoluções espaciais

Silvio Barge Bhering, Cesar da Silva Chagas, Waldir de Carvalho Júnior, Nilson Rendeiro Pereira, Braz Calderano Filho, Helena Saraiva Koenow Pinheiro

Resumo


O objetivo deste trabalho foi avaliar a influência da resolução espacial do modelo digital de elevação e da eficiência de modelos Random Forest sobre a predição dos teores de areia, argila e carbono orgânico, com uso de número reduzido de amostras. O trabalho foi realizado em área de Cerrado com diversidade litológica, no Estado do Mato Grosso do Sul, tendo-se utilizado atributos morfométricos, dados do sensor TM Landsat 5 e litologia como covariáveis preditoras. Dados da camada superficial (0,0–0,2 m) de 175 perfis de solos (0,009
perfis km-2) e de 26 covariáveis preditoras foram utilizados com resolução espacial de 30 (conjunto 1) e 90 m (conjunto 2). A análise realizada pelo Random Forest mostrou que as covariáveis de nível de base do canal de drenagem, da elevação e da litologia foram as mais importantes para explicar a variabilidade. A validação dos modelos apresentou similaridade entre os conjuntos quanto à predição de areia, argila e carbono orgânico, o que explica os seguintes valores de variabilidade espacial, respectivamente: 44, 40 e 33%, para a resolução de
30 m; e de 45, 46 e 33%, para a resolução de 90 m. A resolução espacial das covariáveis preditoras tem pouca influência sobre a predição dos atributos, e a abordagem por Random Forest apresenta potencial de utilização
para estimar atributos do solo.

 


Palavras-chave


modelo digital de elevação, morfometria, pedometria, SRTM.

Texto completo:

PDF


Embrapa Sede, Gerência-Geral de Governança Corporativa e Informação,

Parque Estação Biológica - PqEB - Av. W3 Norte (final) Caixa Postal 040315 - Brasília, DF - Brasil - 70770-901
Fone: +55 (61) 3448-2461