Soybean yield monitoring system for Brazil with FAO-AEZ crop model

Rogerio de Souza Nóia Júnior, José Lucas Safanelli, Lucas Fernandes de Souza, Durval Dourado Neto

Resumo


Year-to-year soybean yield variability in Brazil affects the national economy and food supply. National yield prediction systems for soybeans are important to anticipate possible disruptions in the supply chain. This study aimed at developing a soybean yield monitoring system based on a crop model. Previously calibrated and validated FAO Agro-Ecological Zone (FAO-AEZ) crop model was used to simulate soybean yields for 59 agroclimatic homogenous zones distributed across the Brazilian territory. The spatial performance of FAO-AEZ to simulate soybean yield at homogenous zones level was computed by comparing simulated median soybean yield with observed soybean yield data from national records after applying a trend correction on the time series of 2011 to 2020. To monitor the soybean crop in-season performance, we computed the soybean crop yield anomaly representing the in-season yield variation in relation to five previous cropping seasons with the same sowing dates. The in-season analysis was limited to the most recent cropping seasons reported by the national bulletins (2021 and 2022). The FAO-AEZ crop model performance between 2011 and 2020 reached an r2 of 0.59 and an RMSE of 402 kg ha-1 when compared to historical national statistics. In turn, the in-season analysis for 2022 revealed the model’s capacity to anticipate signs of negative yield trends three months in advance compared to national bulletins. National yield estimations are possible at earlier months of the season further improving the prediction performance when approaching the end. FAO-AEZ crop model only uses commonly available inputs including daily weather data, simple crop management coefficients, and soil water holding capacity parameters, which makes this method easy to adapt to other custom needs such as crops, geographical extent, and prediction resolution.


Palavras-chave


crop yield monitoring; food security; Glycine max (L) Merr.; yield anomaly

Texto completo:

PDF (English)

Referências


ABRAHAM, E.R.; MENDES DOS REIS, J.G.; VENDRAMETTO, O.; OLIVEIRA COSTA NETO, P. L. de; CARLO TOLOI, R.; SOUZA, A.E. de; OLIVEIRA MORAIS, M. de. Time Series Prediction with Artificial Neural Networks: An Analysis Using Brazilian Soybean Production. Agriculture, v. 10, n. 10, p. 475. 2020. DOI: 10.3390/agriculture10100475

ANTOLIN, L. A.S.; HEINEMANN, A. B.; MARIN, F.R. Impact assessment of common bean availability in Brazil under climate change scenarios. Agricultural Systems, v. 191, p. 103174, 2021. DOI: 10.1016/j.agsy.2021.103174

ASSENG, S.; EWERT, F.; MARTRE, P.; RÖTTER, R. P.; LOBELL, D. B.; CAMMARANO, D.; KIMBALL, B. A.; OTTMAN, M. J.; WALL, G. W.; WHITE, J. W.; REYNOLDS, M. P.; ALDERMAN, P. D.; PRASAD, P. V. V.; AGGARWAL, P. K.; ANOTHAI, J.; BASSO, B.; BIERNATH, C.; CHALLINOR, A. J.; DE SANCTIS, G.; ZHU, Y. Rising temperatures reduce global wheat production. Nature Climate Change, v. 5, n. 2, p. 143–147, 2015. DOI:10.1038/nclimate2470

BATTISTI, R.; BENDER, F. D.; SENTELHAS, P. C. Assessment of different gridded weather data for soybean yield simulations in Brazil. Theoretical and Applied Climatology, v. 135, n. 1–2, p. 237–247, 2019. DOI: 10.1007/s00704-018-2383-y

BATTISTI, R.; FERREIRA, M. D. P.; TAVARES, É. B.; KNAPP, F. M.; BENDER, F. D.; CASAROLI, D.; ALVES JÚNIOR, J. Rules for grown soybean-maize cropping system in Midwestern Brazil: Food production and economic profits. Agricultural Systems, v. 182, p. 102850, 2020. DOI: 10.1016/j.agsy.2020.102850

BATTISTI, R.; SENTELHAS, P. C. Improvement of Soybean Resilience to Drought through Deep Root System in Brazil. Agronomy Journal, v. 109, n. 4, p. 1612–1622, 2017. DOI: 10.2134/agronj2017.01.0023

BATTISTI, R.; SENTELHAS, Pa. C.; BOOTE, K. J. Inter-comparison of performance of soybean crop simulation models and their ensemble in southern Brazil. Field Crops Research, v. 200, p. 28–37, 2017. DOI: 10.1016/j.fcr.2016.10.004

BATTISTI, R.; SENTELHAS, P. C.; BOOTE, K. J.; DE S. CÂMARA, G. M.; FARIAS, J. R. B.; BASSO, C. J. Assessment of soybean yield with altered water-related genetic improvement traits under climate change in Southern Brazil. European Journal of Agronomy, v. 83, p. 1–14, 2017. DOI: 10.1016/j.eja.2016.11.004

BATTISTI, R.; SENTELHAS, P. C. Characterizing Brazilian soybean-growing regions by water deficit patterns. Field Crops Research, v. 240, p. 95–105, 2019. DOI: 10.1016/j.fcr.2019.06.007

BOOTE, K. J.; JONES, J. W.; BATCHELOR, W. D.; NAFZIGER, E. D.; MYERS, O. Genetic Coefficients in the CROPGRO–Soybean Model. Agronomy Journal, v. 95, n. 1, p. 32–51, 2003. DOI: 10.2134/agronj2003.3200

BRASIL. Ministério das Minas e Energia. Secretaria Geral. Projeto RADAMBRASIL [S. l.]: Levantamento de Recursos Naturais, 1981. vol. 25, 29, 31.

CONAB. National Supply Company: Agricultural information system. 2022. Available at: https://portaldeinformacoes.conab.gov.br/index.php/safras/safra-serie-historica. Accessed on: 1 Feb. 2022.

DOORENBOS, J.; KASSAM, A. H. Yield response to water. Rome: FAO Irrigation and Drainage, Paper 33, 1979.

DORIGATTI, G. Excesso de chuvas atinge lavouras de soja na Bahia com alagamentos e plantas mortas. 2021. Notícias Agrícolas. Available at: https://www.noticiasagricolas.com.br/noticias/soja/304834-excesso-de-chuvas-atinge-lavouras-de-soja-na-bahia-com-alagamentos-e-plantas-mortas.html#.YujkKHZBxaQ. Accessed on: 1 Feb. 2022.

ESQUERDO, J. C. D. M.; ZULLO JÚNIOR, J.; ANTUNES, J. F. G. Use of NDVI/AVHRR time-series profiles for soybean crop monitoring in Brazil. International Journal of Remote Sensing, v. 32, n. 13, p. 3711–3727, 2011. DOI: 10.1080/01431161003764112

FAO. Food and Agriculture Organization of the United Nations. FAOSTAT statistical database. 2022. Available at: http://www.fao.org/faostat/en/#home. Accessed on: 5 Jun. 2022.

GUARIN, J. R.; ASSENG, S.; MARTRE, P.; BLIZNYUK, N.. Testing a crop model with extreme low yields from historical district records. Field Crops Research, v. 249, p. 107269, 2020. DOI: 10.1016/j.fcr.2018.03.006

HOOGENBOOM, G.; PORTER, C.H.; SHELIA, V.; BOOTE, K.J.; SINGH, U.; WHITE, J.W.; HUNT, L.A.; OGOSHI, R.; LIZASO, J.I.; KOO, J.; ASSENG, S.; SINGELS, A.; MORENO, L.P.; JONES., J.W. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7.2. 2018.

IBGE. Brazilian Institute of Geography and Statistics. Interactive soil maps. 2022a. Available at: https://mapas.ibge.gov.br/tematicos/solos. Accessed on: 5 Jun. 2022.

IBGE. Brazilian Institute of Geography and Statistics. Municipal agricultural research. 2022b. Available at: https://sidra.ibge.gov.br/pesquisa/pam/tabelas. Accessed on: 1 Feb. 2022.

KASSAM, A. H. Calculation of Net Biomass Production and Yield of Crops. Rome: Soil Resources, Management and Conservation Service, Land and Water Development Division, FAO, 1977.

KEATING, B.A; CARBERRY, P.S; HAMMER, G.L; PROBERT, M.E; ROBERTSON, M.J; HOLZWORTH, D; HUTH, N.I; HARGREAVES, J.N.G; MEINKE, H; HOCHMAN, Z; MCLEAN, G; VERBURG, K; SNOW, V; DIMES, J.P; SILBURN, M; WANG, E; BROWN, S; BRISTOW, K.L; ASSENG, S; SMITH, C.J. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, v. 18, n. 3–4, p. 267–288, Jan. 2003. DOI: 10.1016/S1161-0301(02)00108-9

LIMA, M.; SILVA JUNIOR, C. A. da; RAUSCH, L.; GIBBS, H. K.; JOHANN, J. A. Demystifying sustainable soy in Brazil. Land Use Policy, v. 82, p. 349–352, 2019. DOI: 10.1016/j.landusepol.2018.12.016

LIU, W. T.; KOGAN, F. Monitoring Brazilian soybean production using NOAA/AVHRR based vegetation condition indices. International Journal of Remote Sensing, v. 23, n. 6, p. 1161–1179, 2002. DOI: 10.1080/01431160110076126

MAIORANO, A.; MARTRE, P.; ASSENG, S.; EWERT, F.; MÜLLER, C.; RÖTTER, R. P.; RUANE, A. C.; SEMENOV, M. A.; WALLACH, D.; WANG, E.; ALDERMAN, P. D.; KASSIE, B. T.; BIERNATH, C.; BASSO, B.; CAMMARANO, D.; CHALLINOR, A. J.; DOLTRA, J.; DUMONT, B.; REZAEI, E. E.; … ZHU, Y. Crop model improvement reduces the uncertainty of the response to temperature of multi-model ensembles. Field Crops Research, v. 202, p. 5–20, 2017. DOI: 10.1016/j.fcr.2016.05.001

MAPA. SISZARC: Sistema de Zoneamento Agrícola de Risco Climático. 2021. Available at: http://sistemasweb.agricultura.gov.br/siszarc/base.action.

MARIN, F. R.; MARTHA, G. B.; CASSMAN, K. G.; GRASSINI, P. Prospects for Increasing Sugarcane and Bioethanol Production on Existing Crop Area in Brazil. BioScience, v. 66, n. 4, p. 307–316, 2016. DOI: 10.1093/biosci/biw009

MONTEIRO, L. A.; RAMOS, R. M.; BATTISTI, R.; SOARES, J. R.; OLIVEIRA, J. C.; FIGUEIREDO, G. K. D. A.; LAMPARELLI, R. A. C.; NENDEL, C.; LANA, M. A. Potential Use of Data-Driven Models to Estimate and Predict Soybean Yields at National Scale in Brazil. International Journal of Plant Production, 2022. DOI: 10.1007/s42106-022-00209-0

NENDEL, C.; BERG, M.; KERSEBAUM, K.C.; MIRSCHEL, W.; SPECKA, X.; WEGEHENKEL, M.; WENKEL, K.O.; WIELAND, R. The MONICA model: Testing predictability for crop growth, soil moisture and nitrogen dynamics. Ecological Modelling, v. 222, n. 9, p. 1614–1625, 2011. DOI: 10.1016/j.ecolmodel.2011.02.018.

NÓIA JÚNIOR, R. de S.; SAFANELLI, J. L.; SOUZA, L. F. de; MAULE, R. F.; BARRETO, A.; SANTO, L. N. S. dos; PAIXÃO, C. F. C. da; SOUZA, L. R. da S.; SILVA, A. R. da; DOURADO NETO, D. Sistema de monitoramento de produtividade de milho 2a safra no Mato Grosso. Agrometeoros, v. 30, 2022. DOI: 10.31062/agrom.v30.e027074

NÓIA JÚNIOR, R. de S.; FRAISSE, C. W.; KARREI, M. A. Z.; CERBARO, V. A.; PERONDI, D. Effects of the El Niño Southern Oscillation phenomenon and sowing dates on soybean yield and on the occurrence of extreme weather events in southern Brazil. Agricultural and Forest Meteorology, v. 290, p. 108038, 2020. DOI: 10.1016/j.agrformet.2020.108038

NÓIA JÚNIOR, R. de S.; MARTRE, P.; FINGER, R.; VAN DER VELDE, M.; BEN-ARI, T.; EWERT, F.; WEBBER, H.; RUANE, A. C.; ASSENG, S. Extreme lows of wheat production in Brazil. Environmental Research Letters, v. 16, n. 10, p. 104025, 1 Oct. 2021. DOI: 10.1088/1748-9326/ac26f3

NÓIA JÚNIOR, R. de S.; SENTELHAS, P. C. Soybean-maize succession in Brazil: Impacts of sowing dates on climate variability, yields and economic profitability. European Journal of Agronomy, v. 103, p. 140–151, 2019. DOI: 10.1016/j.eja.2018.12.008

NÓIA JÚNIOR, R. de S.; SENTELHAS, P. Cesar. Yield gap of the double-crop system of main-season soybean with off-season maize in Brazil. Crop and Pasture Science, v. 71, n. 5, p. 445, 2020. DOI: 10.1071/CP19372

PASLEY, H. R.; HUBER, I.; CASTELLANO, M. J.; ARCHONTOULIS, S. V. Modeling Flood-Induced Stress in Soybeans. Frontiers in Plant Science, v. 11, 2020. DOI: 10.3389/fpls.2020.00062.

PAUDEL, D.; BOOGAARD, H.; DE WIT, A.; VAN DER VELDE, M.; CLAVERIE, M.; NISINI, L.; JANSSEN, S.; OSINGA, S.; ATHANASIADIS, I. N. Machine learning for regional crop yield forecasting in Europe. Field Crops Research, v. 276, p. 108377, 2022. DOI: 10.1016/j.fcr.2021.108377

POWER PROJECT TEAM. NASA Prediction of Worldwide Energy Resources. 2022. Available at: https://power.larc.nasa.gov/. Accessed on: 5 Jun. 2022.

R CORE TEAM. R: A language and environment for statistical computing. 2021. Available at: https://www.r-project.org/.

REICHERT, J. M.; ALBUQUERQUE, J. A.; KAISER, D. R.; REINERT, D. J.; URACH, F. L.; CARLESSO, R. Estimation of water retention and availability in soils of Rio Grande do Sul. Revista Brasileira de Ciência do Solo, v. 33, n. 6, p. 1547–1560, Dec. 2009. DOI: 10.1590/S0100-06832009000600004

RÖTTER, R. P.; HOFFMANN, M. P.; KOCH, M.; MÜLLER, C. Progress in modelling agricultural impacts of and adaptations to climate change. Current Opinion in Plant Biology, v. 45, p. 255–261, Oct. 2018. DOI: 10.1016/j.pbi.2018.05.009

SAMPAIO, L. S.; BATTISTI, R.; LANA, M. A.; BOOTE, K. J. Assessment of sowing dates and plant densities using CSM-CROPGRO-Soybean for soybean maturity groups in low latitude. The Journal of Agricultural Science, v. 158, n. 10, p. 819–832, 5 Dec. 2020. DOI: 10.1017/S0021859621000204

SCHUG, F.; FRANTZ, D.; VAN DER LINDEN, S.; HOSTERT, P. Gridded population mapping for Germany based on building density, height and type from Earth Observation data using census disaggregation and bottom-up estimates. PLOS ONE, v. 16, n. 3, p. e0249044, 26 Mar. 2021. DOI: 10.1371/journal.pone.0249044

SCHWALBERT, R. A.; AMADO, T.; CORASSA, G.; POTT, L. P.; PRASAD, P. V. V.; CIAMPITTI, I. A. Satellite-based soybean yield forecast: Integrating machine learning and weather data for improving crop yield prediction in southern Brazil. Agricultural and Forest Meteorology, v. 284, p. 107886, 2020. DOI: 10.1016/j.agrformet.2019.107886

SENTELHAS, P. C.; BATTISTI, R.; CÂMARA, G. M. S.; FARIAS, J. R. B.; HAMPF, A. C.; NENDEL, C. The soybean yield gap in Brazil – magnitude, causes and possible solutions for sustainable production. The Journal of Agricultural Science, v. 153, n. 8, p. 1394–1411, 24 Nov. 2015. DOI: 10.1017/S0021859615000313. Available at: https://www.cambridge.org/core/product/identifier/S0021859615000313/type/journal_article.

SILVA, E. H. F. M. da; ANTOLIN, L. A. S.; ZANON, A. J.; ANDRADE, A. S.; SOUZA, H. A. de; CARVALHO, K. dos S.; VIEIRA, N. A.; MARIN, F. R. Impact assessment of soybean yield and water productivity in Brazil due to climate change. European Journal of Agronomy, v. 129, p. 126329, 2021. DOI: 10.1016/j.eja.2021.126329

SILVA, E. H. F. M. da; BOOTE, K. J.; HOOGENBOOM, G.; GONÇALVES, A. O.; ANDRADE JUNIOR, A. S.; MARIN, F. R. Performance of the CSM-CROPGRO-soybean in simulating soybean growth and development and the soil water balance for a tropical environment. Agricultural Water Management, v. 252, p. 106929, Jun. 2021. DOI: 10.1016/j.agwat.2021.106929

STEDUTO, P.; HSIAO, T. C.; RAES, D.; FERERES, E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agronomy Journal, v. 101, n. 3, p. 426–437, 2009. DOI: 10.2134/agronj2008.0139s

WANG, E.; BROWN, H. E; REBETZKE, G. J; ZHAO, Z.; ZHENG, B.; CHAPMAN, S. C. Improving process-based crop models to better capture genotype×environment×management interactions. Journal of Experimental Botany, v. 70, n. 9, p. 2389–2401, 29 Apr. 2019. DOI: 10.1093/jxb/erz092

WANG, E.; HE, D.; WANG, J.; LILLEY, J. M.; CHRISTY, B.; HOFFMANN, M. P.; O’LEARY, G.; HATFIELD, J. L.; LEDDA, L.; DELIGIOS, P. A.; GRANT, B.; JING, Q.; NENDEL, C.; KAGE, H.; QIAN, B.; EYSHI REZAEI, E.; SMITH, W.; WEYMANN, W.; EWERT, F. How reliable are current crop models for simulating growth and seed yield of canola across global sites and under future climate change? Climatic Change, v. 172, n. 1–2, p. 20, 2022. DOI: 10.1007/s10584-022-03375-2

WARDROP, N. A.; JOCHEM, W. C.; BIRD, T. J.; CHAMBERLAIN, H. R.; CLARKE, D.; KERR, D.; BENGTSSON, L.; JURAN, S.; SEAMAN, V.; TATEM, A. J. Spatially disaggregated population estimates in the absence of national population and housing census data. Proceedings of the National Academy of Sciences, v. 115, n. 14, p. 3529–3537, 2018. DOI: 10.1073/pnas.1715305115

ZAHND, W. E.; ASKELSON, N.; VANDERPOOL, R. C.; STRADTMAN, L.; EDWARD, J.; FARRIS, P. E.; PETERMANN, V.; EBERTH, J. M. Challenges of using nationally representative, population-based surveys to assess rural cancer disparities. Preventive Medicine, v. 129, p. 105812, 2019. DOI: 10.1016/j.ypmed.2019.105812

ZHAO, C.; LIU, B.; XIAO, L.; HOOGENBOOM, G.; BOOTE, K. J.; KASSIE, B. T.; PAVAN, W.; SHELIA, V.; KIM, K. S.; HERNANDEZ-OCHOA, I. M; WALLACH, D.; PORTER, C. H.; STOCKLE, C. O.; ZHU, Y.; ASSENG, S. A SIMPLE crop model. European Journal of Agronomy, v. 104, p. 97–106, 2019. DOI: 10.1016/j.eja.2019.01.009




DOI: http://dx.doi.org/10.31062/agrom.v32.e027580

Apontamentos

  • Não há apontamentos.


Embrapa Trigo

Rodovia BR-285, km 294, Caixa Postal: 3081

CEP 99050-970 Passo Fundo/RS