Influence of meteorological factors on the relative water content of coffee plants in the field

Cleide Nascimento Campos, Guilherme Almussa Leite Torres, Amanda Ribeiro Lopes, Angélica Prela Pantano, Julieta Andrea Silva de Almeida

Resumo


Global climate change is leading to changes in rainfall and temperature parameters. With the lack of water, the coffee plant presents growth and development restrictions. The air temperature also affects the coffee plant, as each plant development event requires an ideal temperature. The genetic improvement of coffee can help overcome these difficulties with new cultivars more adapted to the effects of climate change. Thus, studies are necessary to characterize coffee responses to water restriction and high temperatures. So, the objective of the present study was to characterize the relative water content (RWC) of Coffea arabica plants of the cultivar Bourbon Vermelho and the variety Semperflorens, respectively sensitive and tolerant to water deficit under field conditions, cultivated in an experimental area in southeastern Brazil. The RWC was evaluated from September to February for three consecutive years in leaves taken from two branches belonging to the apical and basal portions of four plants, positioned facing the cardinal points West and East. Meteorological data on air temperature and rainfall were collected during these periods by a meteorological station installed near the cultivation site. The Bourbon Vermelho cultivar and the Semperflorens variety under water deficit had similar RWC responses, around 60%, for both the branches belonging to the apical and basal portions of the plants. It was also demonstrated that RWC was not different between the branches positioned in relation to the East and West cardinal points in both the apical and basal portions for plants of the Bourbon Vermelho cultivar and the Semperflorens variety.


Palavras-chave


Coffea arabica; climate change; rainfall; cultivar Bourbon Vermelho; variety Semperflorens

Texto completo:

PDF (English)

Referências


ALFONSI, W. M. V.; COLTRI, P. P.; ZULLO JÚNIOR, J.; PATRÍCIO, F. R. A.; GONÇALVES, R. R. do. V.; SHINJI, K., ALFONSI, E. L.; KOGA-VICENTE, A. Geographical distribution of the incubation period of coffee leaf rust in climate change scenarios. Pesquisa Agropecuária Brasileira. v.54, p.1-11, 2019. https://doi.org/10.1590/S1678-3921.pab2019.v54.00273

ALEMU, A., DUFERA, E. Climate Smart Coffee (Coffea arabica) Production. American Journal of Data Mining and Knowledge Discovery. v. 2, n. 2, p. 62-68, 2017.

ALMEIDA, J. A. S.; LOPES, A, R.; PANTANO, A.; SILVAROLLA, M. B.; MISTRO, J. C. Análise morfofisiológica de plantas de Coffea arabica L. em períodos de seca e de precipitação. Agrometeoros. v.26, p.173-180, 2018. http://dx.doi.org/10.31062/agrom.v26i1.26335

ANDRADE, M. A. F.; PAULO A.; CAIRO, P. A.; SANTOS, J. L. Water relations and photosynthesis of young coffee plants under two water regimes and different N and K. Agrociencia. v.49, p.153-161, 2015.

ANJUM, S. A.; ASHRAF, U.; ZOHAIB, A.; TANVEER, M.; NAEEM, M.; ALI, I.; TABASSUM, T.; NAZIR, U. Growth and developmental responses of crop plants under drought stress: a review. Zemdirbyste-Agriculture. v.104, p.267-276, 2017. http://dx.doi.org/10.13080/z-a.2017.104.034

ANTUNES, C. S. N. Melhoramento do cafeeiro. XIX- Pesquisa sobre o café semperflorens. Bragantia, v.19, p.1011-1040, 1960. https://doi.org/10.1590/S0006-87051960000100061

ASSAD, E, D.; PINTO, H. S. Aquecimento Global e a Nova Geografia da produção agrícola no Brasil. First ed. EMBRAPA-CEPAGRI, São Paulo. 2008.

AVILA, R. G.; MAGALHÃES, P. C.; SILVA, E. M.; SOUZA, K. R. D.; CAMPOS, C. N.; ALVARENGA, A. A.; SOUZA, T. C. Application of silicon to irrigated and water deficit sorghum plants increases yield via the regulation of primary, antioxidant, and osmoregulatory metabolism. Agricultural Water Management, v.255, p.e107004, 2021. https://doi.org10.1016/j.agwat.2021.107004

BARR, H. D.; WEATHERLEY, P. E. A re-examination of the relative turgid¬ity technique for estimating water deficit in leaves. Australian Journal Biology Science, v.15, p.413-428, 1962. http://dx.doi.org/10.1071/BI9620413

BATISTA, L. A.; FABRÍCIO, J. G.; GLADYSTON, J. P.; CARVALHO, R.; CASTRO, E. M. Anatomia foliar e potencial hídrico na tolerância de cultivares de café ao estresse hídrico. Revista Ciência Agronômica. v. 41, n. 3, p. 475-481, 2010.

BICALHO, G. O. D.; ALVES, J. D.; LIVRAMENTO, D. E.; BARTOLO, G. F.; FALEIROS, S. C.; GUERRA NETO, E. G. Direcionamento das linhas de plantio em diferentes orientações cardeais e seus reflexos sobre a produtividade de cafeeiros. In: Simpósio de Pesquisa dos Cafés do Brasil (Londrina, PR: 2005). Anais. Brasília, D.F.: Embrapa - Café, 2005. http://www.sapc.embrapa.br/arquivos/consorcio/spcb_anais/simposio4/p452.pdf.

BURITI, C. O.; BARBOSA, H. A. Um século de secas: por que as políticas hídricas não transformaram o Semiárido brasileiro? First ed. Chiado Books, São Paulo, 2018.

CAMARGO, A. P. Florescimento e frutificação de café arábica nas diferentes regiões (cafeeiras) do Brasil. Pesquisa Agropecuária Brasileira, v.20, p.831-839, 1985. http://dx.doi.org/10.1590/S1678-3921.pab1985.v20.15819

CARVALHO, H. S. C. Cultivares de café: origem, características e recomendações. First ed. EMBRAPA Café, Brasília, 2008.

COFFEE & CLIMATE. Climate Change Adaptation in Coffee Production: A step-by-step guide to supporting coffee farmers in adapting to climate change Produced by the initiative for coffee & climate. 2015. 184 p.

CRUZ, C.D. Programa GENES: estatística experimental e matrizes. First ed. UFV, Viçosa, 2006.

DAMATTA, F. M.; RAMALHO, J. D. C. Impacts of drought and temperature stress on coffee physiology and production: a review. Brazilian Journal Plant Physiology, v.18, p.55-81, 2006. https://doi.org/10.1590/S1677-04202006000100006

DAMATTA, F. M. Exploring drought tolerance in coffee: a physiological approach with some insights for plant breeding. Brazilian Journal of Plant Physiology. v 16, n. 1, p. 1-6, 2004.

DAMATTA, F. M.; CHAVES, A.; PINHEIRO, H. A.; DUCATTI, C.; LOUREIRO, M. E. Drought tolerance of two field-grown clones of Coffea canephora. Plant Science, v.164, p.111-117, 2003. http://dx.doi.org/10.1016/S0168-9452(02)00342-4

DEUNER, S.; ALVES, J. D.; ZANANDREA, I.; GOULART, P. F. P.; SILVEIRA, N. M.; HENRIQUE, P. C.; MESQUITA, A. C. Stomatal behavior and components of the antioxidative system in coffee plants under water stress. Scientia Agricola. v.68, p.77-85, 2011.

FÀBREGAS, N.; FERNIE, A. R. The metabolic response to drought. Journal of Experimental Botany. v.70, p.1077–1085, 2019. https://doi.org/10.1093/jxb/ery437

FUENTEALBA-SANDOVAL, C.; PEDREIROS, A.; FISCHER, S.; LOPEZ, M. D. Influence of different water deficit levels during grain filling on yield and total polyphenols content in spring wheat cultivars. Chilean journal of agricultural research. v.80, p.433-443, 2020. http://dx.doi.org/10.4067/S0718-58392020000300433

GHANNOUM, O. C4 photosynthesis and water stress. Annals of Botany. v.103, p.635-644, 2009. http://dx.doi.org/10.1093/aob/mcn093

GEORGE, S, E.; RAMALAKSHMI, K.; RAO, L. J. M. A perception on health benefits of coffee. Critical Reviews in Food Science and Nutrition. v.48, p.464-486, 2008. http://dx.doi.org/10.1080/10408390701522445

IPCC - INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. Impactos do aquecimento global de 1,5 °C nos sistemas naturais e humanos. In: Relatório Especial sobre o Aquecimento de Global 1,5°C. 2018.

IPCC - INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. Sexto Relatório de Avaliação, Mudança Climática 2021: A Base das Ciências Físicas. 2021.

JARAMILLO. J.; MUCHUGO. E.; VEGA. F.E.; DAVIS. A.; BORGEMEISTER. C.; CHABI-OLAYE. A. Some Like it Hot: The Influence and Implications of Climate Change on Coffe Berry Borer (Hypothenemus Hampei) and Coffee Production in East Africa. Plos One, v.9, e24528, 2011. https://doi.org/10.1371/journal.pone.0024528

KATH, J.; BYRAREDDY, V.M.; MUSHTAQ, S.; CRAPARO, A.; PORCEL, M. Temperature and rainfall impacts on robusta coffee bean characteristics. Climate Risk Management, v.32, p.100281, 2021. https://doi.org/10.1016/j.crm.2021.100281

KOBAYASHI, E. S.; SAKAI, E.; SILVA, E. A.; ARRUDA, F.B.; SILVEIRA, J. M. C.; SOUZA, P. S.; PIRES, R. C. M. Variação sazonal do potencial da água nas folhas de cafeeiro em Mococa, SP. Bragantia. v. 67, n. 2, p. 421-428, 2008.

KOH, I.; GARRETT, R.D.; JANETOS, A.; MUELLER, N.D. Climate risks to Brazilian coffee production. Environmental Research Letters, v.15, p.104015. 2020 http://dx.doi.org/10.1088/1748-9326/aba471

LARCHER, W. Ecofisiologia Vegetal. First ed. Rima. São Carlos. 2000.

LEVITT, J. Response of plants to environmental stress: water radiation, salt and other stress. Academic Press, 1980, 606p.

MARENGO, J. A.; JONES, R.; ALVES, L.; VALVERDE, M. Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. International Journal of Climatology, v.29, p.2241-2255, 2009. http://dx.doi.org/10.1002/joc.1863

MATIELLO, J. B. O café: do cultivo ao consumo. Firts ed. Globo. São Paulo. 1991.

MOLION, L. C. B. Aquecimento Global, El Nino, Manchas Solares, Vulcões e Oscilação Decadal do Pacífico. Revista Climanálise, v.8, p.1-05, 2005.

NOCTOR, G.; MHAMDI, A.; FOYER, C. H. The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiology, v.164, p.1636-1648, 2014. https://doi.org/10.1104/pp.113.233478

PETEK, M. R.; SERA, T.; FONSECA, I. C. de B. Exigências climáticas para o desenvolvimento e maturação dos frutos de cultivares de Coffea arabica. Bragantia, v.68, p.169-181, 2008. https://doi.org/10.1590/S0006-87052009000100018

PILAU, F. G.; ANGELOCCI, L. R. Padrões de interceptação de radiação solar por cafeeiros em função da área foliar. Coffee Science, v.11, p.127-136, 2016. http://www.sbicafe.ufv.br/handle/123456789/8183

PINTO, H.S.; ZULLO Jr, J.; ASSAD, E.D.; EVANGELISTA, B.A. O aquecimento Global e a cafeicultura brasileira. Boletim SBMET, v.31, p.65-72, 2007. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1132

PORFIRIO, L. L.; NEWTH, D.; FINNIGAN, J. J.; CAI, Y. Economic shifts in agricultural production and trade due to climate change. Palgrave Communications, v.4, p.111-125, 2018. https://doi.org/10.1057/s41599-018-0164-y

RODRIGUES, E. F.; LEITE, I. C. Crescimento de genótipos de sorgo plantados nos sentidos Norte-Sul e Leste-Oeste. Pesquisa Agropecuária Brasileira. v.34, p.173-179, 1999. https://doi.org/10.1590/S0100-204X1999000200004

SANTINATO, F.; MATIELLO, J. B.; SANTINAT, R.; GONÇALVES, V. A. R. Direcionamento de plantio, exposição solar e suas implicações no cafeeiro. 2020.https://santinatocafes.com/artigos/detalhe/6396/direcionamento-de-plantio-exposicao-solar-e-suas-implicacoes-no-cafeeiro/(accessed) 09 August 2022).

SANTOS, L. F. dos.; MARTINS, F. B.; GARCIA, S. R. Padrões climatológicos de precipitação e temperatura do ar associados ao rendimento do feijão comum em Minas Gerais. Revista Brasileira de Climatologia: Edição Especial Dossiê Climatologia de Minas Gerais, v.14, p.3-24, 2018. http://dx.doi.org/10.5380/abclima.v1i0.59108

SANTOS, J. L. D.; MATSUMOTO, S. N.; BRITO, C. L. L.; SANTOS, J. L.; OLIVEIRA, L. S. Respostas fisiológicas de cafeeiro em crescimento vegetativo inicial a cloreto de Mepiquat e disponibilidade hídrica. Coffee Science, v.10, p.482-490, 2015. http://www.sbicafe.ufv.br/handle/123456789/8151

SANTOS, R.F.; CARLESSO, R. Déficit hídrico e os processos morfológico e fisiológico das plantas. Revista Brasileira de Engenharia Agrícola e Ambiental, v.2, p.287-294, 1998. https://doi.org/10.1590/1807-1929/agriambi.v2n3p287-294

SETT, R. Tolerance of plants in response to abiotic stress factors. Recent Advances in Petrochem Science. v. 1, p. 555-573, 2017. http://dx.doi.org/10.19080/RAPSCI.2017.01.555573

SHIFERAW, B.; TESFAYE, K.; BERRESAW, M. K.; ABATE, T.; PRASANNA, B.M.; MENKIR, A. Managing vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa: Technological, institutional and policy options. Weather and Climate Extremes, v.3, p.67-79, 2014. http://dx.doi.org/10.1016/j.wace.2014.04.004

SENA, J. A.; ZAIDAN, H. A.; CASTRO, P. R. C. Transpiration and Stomatal Resistance Variations of Perennial Tropical Crops Under Soil water Availability Conditions and water Deficit. Brazilian Archives of Biology and Technology. v. 50, n. 2, p.225-230, 2007.

SILVA, E. A.; MAZZAFERA, P. Influence of temperature and water on coffee culture. American Journal Plant Science Biotechnology, v.2, p.32-41, 2008.

SILVA R, W. C.; PAULA, B. L. Causa do aquecimento global: antropogênica versus natural. Terra e Didática, v.5, p.42-49, 2009. https://doi.org/10.20396/td.v5i1.8637501

SILVA, M. T.; SILVA, V. de P. R. da.; AZEVEDO, P. V. de. O cultivo do algodão herbáceo no sistema de sequeiro no Nordeste do Brasil, no cenário de mudanças climática. Revista Brasileira de Engenharia Agrícola e Ambiental, v.16, p.80-91, 2012. https://doi.org/10.1590/S1415-43662012000100011

SILVA, P. C. D.; JUNIOR, W. Q. R.; RAMOS, M. L. G.; ROCHA, O. C.; VEIGA, A. D.; SILVA, N. H.; BRASILEIRO, L. D. O.; SANTANA, C. C.; SOARES, G. F.; MALAQUIAS, J. V.; Vinson, C. C. Physiological Changes of Arabica Coffee under Different Intensities and Durations of Water Stress in the Brazilian Cerrado. Plants. v. 11, p. 2198, 2022. https://doi.org/10.3390/plants11172198

SLAVIK, B. Water in cells and tissues. In: Methods for studying plant water relations. Slavik, B., (Ed.) Springer-Verlag, Berlin. p. 1-120. 1974

TAVARES, P. da. S.; GIAROLLA, A.; CHAN, C. S.; SILVA, A. J. de. P.; LYRA, A. de. A. Climate change impact on the potential yield of Arabica coffee in southeast Brazil. Regional Environmental Change, v.18, p.873-883, 2018. https://doi.org/10.1007/s10113-017-1236-z

THOMAZIELLO, R. A.; FAZUOLI, L. C.; PEZZOPANE, J. R. M.; FAHL, J. I.; CARELLI, M. L. C. 2000. Café arábica: cultura e técnicas de produção. IAC. Boletim Técnico, Campinas: Instituto Agronômico 187: 82.

THORNTHWAITE, C. W.; MATHER, J. R. The water balance. Publicatio of climatology, Laboratory of Climatology, Centerton, v.8, n., 1995.

THORNTHWAITE, C. W. An approach toward a rational classification of climate. Geographical Review, New York, n. 1, p. 55-94, 1948.

ROLIM, G. S.; CAMARGO, M. B. P.; LANIA, D. G.; MORAES, J. F. L. Classificação Climática de Köppen e de Thornthwaite e sua aplicabilidade na determinação de Zonas Agroclimáticas para o Estado de São Paulo. Bragantia. v.66, n.4, p.711- 720. 2007

TORRES, G. A. L.; ZEZZO, L. V.; SÃO JOSE, R. V.; GRECO, R.; COLTRI, P. P. Exposure to Climate Risk: A case study for coffee farming in the region of Alta Mogiana, São Paulo. Anais da Academia Brasileira de Ciências, v. 94, p. e20211379, 2022. https://doi.org/10.1590/0001-3765202220211379

XU, Z.; ZHOU, G.; SHIMIZU, H. Plant responses to drought and rewatering. Plant signaling & behavior, v.5, p.649-654, 2010. https://doi.org/10.4161%2Fpsb.5.6.11398




DOI: http://dx.doi.org/10.31062/agrom.v31.e027178

Apontamentos

  • Não há apontamentos.


Embrapa Trigo

Rodovia BR-285, km 294, Caixa Postal: 3081

CEP 99050-970 Passo Fundo/RS