PROJETA platform: accessing high resolution climate change projections over Central and South America using the Eta model
Resumo
The search for data on climate change by researchers, government agencies or private companies is a recurrent demand. However, it is hampered by the means of access to this type of information, mainly due to the complexity of extracting, reformatting, and making this data available, which can exceed terabytes in size. The PROJETA platform aims to automate the process of extracting and making available the dataset of global climate change projections downscaling to 20 km over South America generated by the model Eta at CPTEC/INPE. The data request, processing, and conversion process, which used to be done manually and in a oneto-one data delivery basis. The objective of this work is to describe the methodology used to create the platform PROJETA and the information made available. It is a service that allows access to a broad set of different climatic variables. This dataset is available to different users via the Web or API, in a flexible way in terms of data format and data volume. In addition, it integrates technologies that allow the access to the database in an efficient and easy way for use in studies of impact, vulnerability, and adaptation to climate change in various socio-economic sectors.
Palavras-chave
Texto completo:
PDF (English)Referências
ALDER, J. R.; HOSTETLER, S. W. Web based visualization of large climate data sets. Environmental Modelling & Software, Amsterdam, v. 168, p. 175-180, 2015.
ARORA, V. K.; SCINOCCA, J. F.; BOER, G. J.; CHRISTIAN, J. R.; DENNMAN, K. L.; FLATO, G. M.; KHARIN, V. V.; LEE, W. G.; MERRYFIELD, W. J. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases, Geophys. Res. Lett., Washington, v. 38, n. 5, p. L05805, 2011.
BRöRING, A.; ECHTERHOFF, J.; JIRKA, S.; SIMONIS, I.; EVERDING, T.; STASCH, C.; LIANG, S.; LEMMENS, R. New generation sensor web enablement. Sensors, Basel, v. 11, n. 3, p. 2652, 2011.
BLOWER, J. D.; GEMMELL, A. L.; GRIFFITHS, G. H.; HAINES, K.; SANTOKHEE, A.; YANG, X. A Web Map Service implementation for the visualization of multidimensional gridded environmental data. Environmental Modelling & Software, Amsterdam, v. 47, p. 218-224, 2013.
CHOU, S. C. Modelo Regional Eta. Climanálise (São José dos Campos), Cachoeira Paulista, SP, v. 1, n. Edição Especial, 1996.
CHOU, S. C.; BUSTAMANTE, J.; GOMES, J. L. Evaluation of Eta Model seasonal precipitation forecasts over South America. Nonlinear Processes in Geophysics, Göttingen, v. 12, p. 537-555, 2005.
CHOU, S. C.; MARENGO, J. A.; LYRA, A. A.; SUEIRO, G.; PESQUERO, J. F.; ALVES, L. M., KAY, G.; BETTS, R.; CHAGAS, D. J.; GOMES, J. L.; BUSTAMANTE, J. F.; TAVARES, P. Downscaling of South America present climate driven by 4-member HadCM3 runs. Climate Dynamics, Heidelberg, v. 38, n. 3–4, p. 635–653, 2012.
CHOU, S. C.; LYRA, A.; MOURÃO, C.; DERECZYNSKI, C.; PILOTTO, I.; GOMES, J.; BUSTAMANTE, J.; TAVARES, P.; SILVA, A.; RODRIGUES, D.; CAMPOS, D.; CHAGAS, D.; SUEIRO, G.; SIQUEIRA, G.; MARENGO, J. Assessment of Climate Change over South America under RCP 4.5 and 8.5 Downscaling Scenarios. American Journal of Climate Change, Wuhan, v. 3, n. 5, p. 512–527, 2014a.
CHOU, S. C.; LYRA, A.; MOURÃO, C.; DERECZYNSKI, C.; PILOTTO, I.; GOMES, J.; BUSTAMANTE, J.; TAVARES, P.; SILVA, A.; RODRIGUES, D.; CAMPOS, D.; CHAGAS, D.; SUEIRO, G.; SIQUEIRA, G.; NOBRE, P.; MARENGO, J. Evaluation of the Eta Simulations Nested in Three Global Climate Models. American Journal of Climate Change, Wuhan, v. 3, n. 5, p. 438-454, 2014b.
COLLINS, W.J.; BELLOIN, N.; DOUTRIAUX-BOUCHER, M.; et al. Development and evaluation of an earth-system model—HadGEM2. Geosci Model Dev, Göttingen, v. 4, p. 1051-1075, 2011. doi:10.5194/gmd4-1051-2011
DERECZYNSKI, C.P.; PRISTO, M.V.J.; CHOU, S.C.; CAVALCANTI, I.F.A.; ROZANTE, J.R. Avaliação das Previsões do Modelo Eta na região da Serra do Mar (Estado de São Paulo), Brasil. Anuário do Instituto de Geociências UFRJ, Rio de Janeiro, v. 33, n. 2, p. 36-51, 2010.
FRALEY, C.; RAFTERY, A. E.; GNEITING, T.; SLOUGHTER, M.; BERROCAL, V. Probabilistic weather forecasting in R. The R Journal, New York, v. 3, n. 1, p. 55–63, 2011.
FORTES, P.; PLATONOV, A.; PEREIRA, L. Gisareg - A GIS based irrigation scheduling simulation model to support improved water use. Agricultural Water Management, Heidelberg, v. 77, n. 1–3, p. 159–179, 2005.
FRÍAS, M. D.; ITURBIDE, M.; MANZANAS, R.; BEDIA, J.; FERNÁNDEZ, J.; HERRERA, S.; COFIO, A. S.; GUTIÉRREZ, J. M. An R package to visualize and communicate uncertainty in seasonal climate prediction. Environmental Modelling & Software, Amsterdam, v. 99, p. 101-110, 2018.
HALLGREN, W.; BEAUMONT, L.; BOWNESS, A.; CHAMBERS, L.; GRAHAM, E.; HOLEWA, H.; LAFFAN, S.; MACKEY, B.; NIX, H.; PRICE, J.; VANDERWAL, J.; WEARREN, R.; WEIS, G. The Biodiversity and Climate Change Virtual Laboratory: Where ecology meets big data. Environmental Modelling & Software, Amsterdam, v. 76, p. 182-186, 2016.
HEY, T.; TREFETHEN, A. E. Cyberinfrastructure for e-Science. Science, Washington DC, v. 308, n. 5723, p. 817–821, 2005. JAGTAP, S. S.; JONES, J. W. Adaptation and evaluation of the CROPGROsoybean model to predict regional yield and production. Agriculture, Ecosystems and Environment, London, v. 93, n. 1–3, p. 73–85, 2002.
JIA, R.; JIANG, Y.; SUN, H.; WEI, X. Research on distributed GIS process modeling and integration. In: IEEE INTERNATIONAL SYMPOSIUM ON IT IN MEDICINE AND EDUCATION, 1., 2008, Xiamen, China. Proceedings... Xiamen: IEEE, 2008, p. 33-38.
JONES, A. S.; HORSBURGH, J. S., JACKSON-SMITH, D., RAMÍRES, M.; FLINT, C. G.; CARABALLO, J. A web-based, interactive visualization tool for social environmental survey data. Environmental Modelling & Software, Amsterdam, v. 84, p. 412–426, 2016.
KEMP, M. U.; LOON, E. E. v.; SHAMOUN-BARANES, J.; BOUTEN, W. RNCEP: global weather and climate data at your fingertips. Methods in Ecology and Evolution, London, v. 3, n. 1, p. 65-70, 2012.
KNOX, J.; HESS, T.; DACCACHEL, A.; WHEELER, T. Climate change impacts on crop productivity in Africa and South Asia. Environmental Research Letters, Philadelphia, v. 7, n. 3, p. 034032, 2012.
LYRA, A.; TAVARES, P.; CHOU, S. C.; SUEIRO, G.; DERECZYNSKI, C.; SONDERMANN, M.; SILVA, A.; MARENGO, J.; GIAROLLA, A. Climate change projections over three metropolitan regions in Southeast Brazil using the non-hydrostatic Eta regional climate model at 5-km resolution. Theoretical and Applied Climatology, Vienna, v. 132, n. 1–2, p. 663–682, 2017.
MANUBENS, N.; CARON, L. P.; HUNTER, A.; BELLPRAT, O.; EXARCHOU, E.; FUčKAR, N. S.; DOBLAS-REYES, F. J. (2018). An R package for climate forecast verification. Environmental Modelling & Software, Amsterdam, v. 103, p. 29–42, 2018.
MANYIKA, J.; CHUI, M.; BROWN, B.; BUGHIN, J.; DOBBS, R.; ROXCHARLES, C.; BYERS, A. H. Big Data: The next frontier for innovation, competition, and productivity. New York: McKinsey Global Institute, 2011. Available at: . Access in: 03 jun. 2018.
MARENGO, J. A.; CHOU, S. C.; KAY, G.; ALVES, L. M.; PESQUERO, J. F.; SOARES, W. R..; SANTOS, D. C.; LYRA, A. A.; SUEIRO, G.; BETTS, R.; CHAGAS, D. J.; GOMES, J. L.; BUSTAMANTE, J. F.; TAVARES, P. Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins. Climate Dynamics, Heidelberg, v. 38, n. 9–10, p. 1829–1848, 2012.
MESINGER, F. A blocking technique for representation of mountains in atmospheric models. Riv Meteorol Aeronautica, Bethesda, v. 44, p. 195-202, 1984.
MESINGER F.; CHOU, S.C.; GOMES, J.L.; JOVIC, D.; BASTOS, P.; BUSTAMANTE, J.F.; LAZIC, L.; LYRA, A.A.; MORELLI, S.; RISTIC, I.; VELJOVIC, K. An upgraded version of the Eta model. Meteorology and Atmospheric Physics, Vienna, v. 116, n. 3, p. 63-79, 2012.
MESINGER, F.; VELJOVIC, K.; CHOU, S.C.; GOMES, J.; LYRA, A. In: HROMADKA, T.; RAO, P.(Org.). Topics in Climate Modeling. Rijeka: InTech, 2016. Chap. 6, p. 137-156. MCTI - Ministry of Science, Technology, and Innovation. Third National Communication of Brazil to the United Nations Framework Convention on Climate Change. Ministry of Science, Technology, and Innovation. Brasília, DF, Brazil, 2016. Available at: . Access in: 03 jun. 2018.
PESQUERO, J. F.; CHOU, S. C.; NOBRE, C. A.; MARENGO, J. A. Climate downscaling over South America for 1961–1970 using the Eta Model. Theoretical and Applied Climatology, Vienna, v. 99, n. 1–2, p. 75–93, 2010.
PILOTTO, I.D.; CHOU, S.C.; NOBRE, P. Seasonal climate hindcasts with Eta model nested in CPTEC coupled ocean-atmosphere general circulation model. Theoretical and Applied Climatology, Vienna, v l.110, n. 3, p. 437-456, 2012. SAE - Secretaria de Assuntos Estratégicos. BRASIL 2040: cenários e alternativas de adaptação à mudança do clima, Presidência da República, Secretaria de Assuntos Estratégicos, Brasília, 2015, Available at: . Access in: 03 jun. 2018.
SAULO, C.; NICOLINI, M.; CHOU, S.C. Model characterization of the South American low-level flow during the 1997-1998 spring-summer season. Climate Dynamics, Heidelberg, v. 16, n. 10-11, p. 867-881, 2000.
SELUCHI, M. E.; NORTE, F.; SATYAMURTY, P.; CHOU, S. C. Analysis of three situations of foehn effect over the Andes. Weather and Forecasting, Boston, v. 18, p. 481-501, 2003.
SELUCHI, M.E.; CHOU, S.C.; GRAMANI, M. A case study of winter heavy rainfall event over the Serra do Mar in Brazil. Geofísica International, México-DF, v. 50, n. 1, p. 41-56, 2011.
SERRANO-NOTIVOLI, R.; DE LUIS, M.; BEGUERÍA, S. An R package for daily precipitation climate series reconstruction. Environmental Modelling and Software, Amsterdam, v. 89, p. 190-195, 2017.
SRIHARAN, S.; EVERITT, J. H.; FLETCHER, R. Geographic information system (GIS) and remote sensing (RS): Undergraduate academic curriculum and Precollege training program. In: IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2008, 2008, Boston, MA. Proceedings… Boston: IEEE, 2008. v. 3, p. III-1421-III-1424.
VAN VUUREN, D. P.; EDMONDS, J.; KAINUMA, M.; RIAHI, K.; WEYANT, J. A special issue on the RCPs. Climatic Change, Amsterdam, v. 109, n. 1, p. 1-4, 2011a.
VAN VUUREN, D. P.; EDMONDS, J.; KAINUMA, M.; et al. The representative concentration pathways: an overview. Climatic Change, Amsterdam, v. 109, n. 1, p. 5-31, 2011b.
VIEIRA JUNIOR, P. A.; DOURADO NETO, D.; CHOU, S. C.; MARTIN, T. N. 2009. Avaliação de previsões meteorológicas do Modelo Eta para subsidiar o uso de modelos de previsão agrícola no Centro-Sul do Brasil. Ciência Rural, Santa Maria, v. 39, n. 2, p. 412-420, 2009.
VIEIRA JUNIOR, P. A. Previsão de atributos do clima e do rendimento de grãos de milho na região Centro-Sul do Brasil. 2006. 329 p. Tese (Doutorado em Agronomia) - Universidade de São Paulo, Piracicaba.
VITOLO, C.; ELKHATIB, Y.; REUSSER, D.; MACLEOD, C. J. A.; BUYTAERT, W. Web technologies for environmental Big Data. Environmental Modelling & Software, Amsterdam, v. 63, p. 185-198, 2015.
WANG, S.; ANSELIN, L.; BHADURI, B.; CROSBY, C.; GOODCHILD, M. F.; LIU, Y.; NYERGES, T. Cybergis software: a synthetic review and integration roadmap. International Journal of Geographical Information Science, London, v. 27, n. 11, p. 2122-2145, 2013.
WATANABE, M.; SUZUKI, T.; O’ISHI, R.; KOMURO, Y.; WATANABE, S.; EMORI, S.; et al. Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate Sensitivity. Journal of Climate, Boston, v. 23, p. 6312-6335, 2010.
WIGAN, M. R.; CLARKE, R. Big Data’s big unintended consequences. Computer, Los Alamitos, v. 46, n. 6, p. 46–53, 2013.
YIN, S.; KAYNAK, O. Big Data for Modern Industry: Challenges and Trends [Point of View]. Proceedings of the IEEE, New York, v. 103, n. 2, p. 143-146, 2015.
YUAN, J.; YUE, P.; GONG, J.; ZHANG, M. A Linked Data Approach for Geospatial Data Provenance. IEEE Transactions on Geoscience and Remote Sensing, Pasadena, v. 51, n. 11, p. 5105-5112, 2013.
DOI: http://dx.doi.org/10.31062/agrom.v26i1.26366
Apontamentos
- Não há apontamentos.
Embrapa Trigo
Rodovia BR-285, km 294, Caixa Postal: 3081
CEP 99050-970 Passo Fundo/RS