Energy balance from images in humid climate – SEBAL and METRIC

Juliano Schirmbeck, Denise Cybis Fontana, Débora Regina Roberti, Lucimara Wolfarth Schirmbeck

Resumo


Evapotranspiration is an important phenomenon to agriculture; therefore, this work aims at verifying the suitability of the SEBAL and METRIC models to estimate latent heat flux using remote sensing data from grain cultivation areas in the northwestern subtropical region of Rio Grande do Sul. This region stands out for grain production. The analyzed data set consisted of 84 dates distributed over a 3-year period of areas planted with soy, corn, oats, wheat, and vetch crops. The data estimated from the remote images were compared with the reference measurements acquired in a micrometeorological station using the Eddy Covariance technique. Both models presented satisfactory results. However, the LE estimated by the METRIC model had the lowest error for all 3 types of soil cover analyzed. The best performance of the METRIC model is attributed to the fact that it does not require extreme water condition, i.e. for LE equal to zero, to determine the hot pixel when estimating the sensible heat flux, unlike the SEBAL model.


Palavras-chave


MODIS; micrometeorological station; Eddy Covariance.

Texto completo:

PDF (English)

Referências


ALLEN, R.G.; PEREIRA, L.S.; RAES, D.; SMITH, M. Crop evapotranspiration - Guidelines for computing crop water requirements. Rome: Food and Agriculture Organization of the United Nations - FAO, 300 p. 1998.

ALLEN, R.G.; TASUMI, M.; TREZZA, R. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC) - Model. Journal of Irrigation and Drainage Engineering, v. 133, p. 380-394. 2007.

BALDOCCHI, D.D. ; HICKS, B.B. ; MEYERS, T.P. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology, v. 69, p. 1331-1340. 1988.

BASTIAANSSEN, W.G.M. Regionulizution of surjixe, flux densith und moisture indicurors in composite terruin. Ph.D. Thesis, Wageningen Agricultural University (appeared also as Report 109, DLO-Winand Staring centre), Wageningen, The Netherlands: 273 p.1995.

BASTIAANSSEN, W.G.M.; MENENTI, M.; FEDDES, R.A.; HOLTSLAG, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of Hydrology, v. 212-213, p. 198-212. 1998.

BASTIAANSSEN, W.G.M. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology, v. 229, p. 87-100. 2000.

BROTZGE, J.A.; CRAWFORD, K.C. Examination of the Surface Energy Budget: A Comparison of Eddy Correlation and Bowen Ratio Measurement Systems. Journal of Hydrometeorology, v. 4, p. 160-178. 2003.

BRUTSAERT, W. Evaporation into the atmosphere. Theory, history, and applications. Reidel Publishing Company, Dordrecht, Holland, 299 p. 1984.

BOEGH, E.; SOEGAARD, H.; THOMSEN, A. Evaluating evapotranspiration rates and surface conditions using Landsat TM to estimate atmospheric resistance and surface resistance. Remote Sensing of Environment, v. 79, p. 329-343. 2002.

CAMMALLERI C.; ANDERSON, M.C.; CIRAOLO, G.; D’URSO, G.; KUSTAS, W.P.; LOGGIA, G.LA.M.; MINACAPILLI, M.. Applications of a remote sensing-based two-source energy balance algorithm for mapping surface fluxes without in situ air temperature observations. Remote Sensing of Environment, v. 124, p. 502-515. 2012.

CAMMALLERI, C. ; ANDERSON, M.C. ; KUSTAS, W.P. Upscaling of evapotranspiration fluxes from instantaneous to daytime scales for thermal remote sensing applications. Hydrology Earth System Sciences, v. 18, p. 1885–1894. 2014.

DALMAGO, G.A.; BERGAMASCHI, H.; KRÜGER, C.A.M.B.; BERGONCI, J.I.; COMIRAN, F.; HECKLER, B.M.M. Evaporação da água na superfície do solo em sistemas de plantio direto e preparo convencional. Pesquisa Agropecuária Brasileira, v. 45, p.780-790. 2010.

FRIEDL, M.A. Forward and inverse modeling of land surface energy balance using surface temperature measurements. Remote Sensing of Environment, v. 79, p. 344-354. 2002.

FRENCH, A.; HUNSAKER, D.J.; THORP, K.R. Remote sensing of evapotranspiration over cotton using the TSEB and METRIC energy balance models. Remote Sensing of Environment, v. 158, p. 281-294. 2015.

KILIC, A.; ALLEN, R.; TREZZA, R.; RATCLIFFE, I.; KAMBLE, B.; ROBISON, C.; OZTURK, D. Sensitivity of evapotranspiration retrievals from METRIC processing algorithm to improved radiometric resolution of Landsat 8 thermal data and to calibration bias in Landsat 7 and 8 surface temperature. Remote Sensing of Environment, v. 185, p. 198-209. 2016.

KUSTAS, W.P.; Li, F.; JACKSON, T.J.; PRUEGER, J.H.; MACPHERSON, J.L.; WOLDE, M. Effects of remote sensing pixel resolution on modelled energy flux variability of croplands in Iowa. Remote Sensing of Environment, v. 92, p. 535-547. 2004.

KUSTAS, W.P.; NIETO, H.; MORILLAS, L.; ANDERSON, M.C.; ALFIERI, J.G.; HIPPS, L.E.; VILLAGARCÍA, L.; DOMINGO, F.; GARCIA, M. Revisiting the paper “Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective”. Remote Sensing of Environment, v. 184, p. 645-653. 2016.

Land Processes Distributed Active Archive Center - LP DAAC. Banco de Imagens de Satélite. Disponível em: Acesso em 20 jan. 2017.

LONG, D.; SINGH, V.P. A Two-source trapezoid model for evapotranspiration (TTME) from satellite imagery. Remote Sensing of Environment, v. 121, p. 370-388. 2012.

LONG, D.; SINGH, V.P. Assessing the impact of end-member selection on the accuracy of satellite-based spatial variability models for actual evapotranspiration estimation. Water Resources Research, v. 49, p. 2601–2618. 2013.

MORTON, C.G.; HUNTINGTON, J.L.; POHLL, G.M.; ALLEN, R.G.; MCGWIRE, K.C.; BASSETT, S.D. Assessing Calibration Uncertainty and Automation for Estimating Evapotranspiration from Agricultural Areas Using METRIC. Journal of the American Water Resources Association, v. 49, p. 549-562. 2013.

MOREIRA, V.S.; ROBERTI, D.R.; MINELLA, J.P.;GONÇALVES, L.G.G. de; CANDIDO, L.A.; FIORIN, J.E.; MORAES, O.L.L.; TIMM, A.U.; CARLESSO, R.; DEGRAZIA. G.A. Seasonality of soil water exchange in the soybean growing season in southern Brazil. Scientia Agrícola, v. 72, p. 103-113. 2015.

ROERINK, G.J.; SU, B.; MENENTI, M. S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Physics and Chemistry of the Earth, Part B, Hydrology, Oceans and Atmosphere, v. 25, p. 147-157. 2000.

SÁNCHEZ, J.M.; KUSTAS, W.P.; CASELLES, V.; ANDERSON, M.C. Modelling surface energy fluxes over maize using a two-source patch model and radiometric soil and canopy temperature observations. Remote Sensing of Environment, v. 112, p. 1130-1143. 2008.

SUMNER, D.M.; JACOBS, J.M. Utility of Penman–Monteith, Priestley– Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration. Journal of Hydrology, v. 308, p. 81–104 2005.

TANG, R.; LI, Z.L.; JIA, Y.; LI, C.; CHEN, K.S.; SUN, X.; LOU, J. Evaluating one- and two-source energy balance models in estimating surface evapotranspiration from Landsat-derived surface temperature and field measurements. International Journal of Remote Sensing, v. 34, p. 3299-3313. 2013

TIMMERMANS, W.J.; KUSTAS, W.P.; ANDERSON, M.C.; FRENCH, A.N. An intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) modeling schemes. Remote Sensing of Environment, v. 108, p. 369-384. 2007.

WANG, K.; LI, Z.; CRIBB, M. 2006. Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley–Taylor parameter. Remote Sensing of Environment, v. 102, p. 293-305. 2006.

WILSON, K.; GOLDSTEIN A.; FALGE, E.; AUBINET, M.; BALDOCCHI, D.; BERBIGIER, P.; BERNHOFER, C.; CEULEMANS, R.; DOLMAN, H.; FIELD, C.; GRELLE, A.; IBROM, A.; LAW, B.E.; KOWALSKI, A.; MEYERS, T.; MONCRIEFF, J.; MONSON, R.; OECHEL, W.; TENHUNEN, J.; VALENTINI, R.; VERMA, S. Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, v. 113, p. 223–243. 2002.




DOI: http://dx.doi.org/10.31062/agrom.v25i2.25766

Apontamentos

  • Não há apontamentos.


Embrapa Trigo

Rodovia BR-285, km 294, Caixa Postal: 3081

CEP 99050-970 Passo Fundo/RS