# AVALIAÇÃO DE CULTIVARES DE SOJA QUANTO À FIXAÇÃO BIOLÓGICA DO NITROGÊNIO<sup>1</sup>

#### TEMIS REGINA JACQUES BOHRER<sup>2</sup> e MARIANGELA HUNGRIA<sup>3</sup>

RESUMO - Este trabalho objetivou detectar cultivares de soja (Glycine max L. Merril) com maior capacidade de nodulação e fixação biológica do N<sub>2</sub> (FBN) e cultivares que restringem a nodulação com as estirpes de Bradyrhizobium estabelecidas nos solos brasileiros. A avaliação foi feita com 152 cultivares, infectadas sob condições ambientais controladas, axênicas e na ausência de N mineral, com uma das três estirpes de Bradyrhizobium elkanii: SEMIA 5019 (=29w), SEMIA 587 e SEMIA 566. Das cultivares analisadas, nenhuma restringiu a nodulação, embora houvesse uma diferença de até quatro vezes no número e massa de nódulos por planta. A média geral de nitrogênio acumulado na parte aérea das cultivares infectadas foi de 50,24 mg N/planta. As cultivares que apresentaram melhor desempenho simbiótico com todas as estirpes e acumularam 30% a mais de N do que a média geral foram: Bossier, BR-29, J-200 e Ivaí. As cinco cultivares que apresentaram menores taxas de FBN foram: BR-7, EMBRAPA 9, EMGOPA-313, FT-Canarana e Paranagoiana.

Termos para indexação: Bradyrhizobium, inoculação, Glycine max, nodulação, simbiose.

## EVALUATION OF SOYBEAN CULTIVARS FOR BIOLOGICAL NITROGEN FIXATION

ABSTRACT - This work aimed at selecting cultivars for higher nodulation and biological N, fixation (BNF) as well as for nodulation restriction with *Bradyrhizobium* strains established in Brazilian soils. The evaluation was done with 152 soybean genotypes. The cultivars were inoculated under environmentally controled and axenic conditions and in the absence of mineral N, with each one of the following *Bradyrhizobium elkanii* strains: SEMIA 5019 (=29w), SEMIA 587 and SEMIA 566. None of the cultivars tested restricted completely the nodulation, although up to four fold differences in nodule number and mass were found. General mean of total N accumulated in shoots of all cultivars with all strains was of 50.24 mg N/plant. The cultivars that showed better symbiotic performance with all strains and accumulated 30% more N than the general mean were: Bossier, BR-29, J-200, and Ivai. The five cultivars characterized by lower BNF rates were: BR-7, EMBRAPA 9, EMGOPA-313, FT-Canarana and Paranagoiana.

Index terms: Bradyrhizobium, Glycine max, inoculation, nodulation, symbiosis.

# INTRODUÇÃO

A soja (Glycine max [L.] Merrill) é considerada uma das mais antigas plantas cultivadas do mundo, sendo citada na literatura chinesa como uma cultura que, possivelmente, tenha sido cultivada extensivamente, na China e Manchúria, aos 2.500 anos a.C. (Morse, 1950). Há indicações de que o engenheiro agrônomo Gustavo D'utra introduziu a soja no Brasil, no Estado da Bahia, em 1882 (D'utra, 1899). Nas décadas seguintes, a cultura migrou para terras paulistas e gaúchas, mas somente nos anos 60, com a expansão da cultura do trigo, ocorreu o grande impulso na produção nacional de soja, em decorrência da sucessão ao plantio do trigo, no Rio Grande do Sul (Knight, 1971). Em 1976, o Brasil atingiu a vice-liderança mundial na produção mundial da soja e, graças ao desempenho das lavouras brasileiras, o país é hoje responsável por 16,9% da produção mundial (FAO, 1993).

Aceito para publicação em 29 de setembro de 1997.
Extraído da Dissertação de Mestrado da primeira autora apresentada à Universidade Estadual de Londrina, PR.

<sup>&</sup>lt;sup>2</sup>Bióloga, M.Sc., Rua Bento Gonçalves, n.252, apt. 102, CEP 95900-000 Lajeado, RS.

<sup>&</sup>lt;sup>3</sup> Eng. Agr., Ph.D., Embrapa-Centro Nacional de Pesquisa de Soja (CNPSo), Caixa Postal 231, CEP 86001-970 Londrina, PR. Bolsista do CNPq.

A importância econômica e social da soja reside, principalmente, no elevado teor protéico dos grãos, de cerca de 40%. Como o nitrogênio é um elemento-chave na síntese de proteínas, sua demanda é elevada na cultura, que acumula cerca de 100 kg a 200 kg de N/ha, sendo 67% a 75% alocados nas sementes. Esse nitrogênio pode ser absorvido diretamente do solo ou ser fornecido pela fixação biológica do nitrogênio (FBN), realizada por bactérias da família Rhizobiacea. Em termos agrícolas, a relação simbiótica mais importante é com bactérias pertencentes à espécie Bradyrhizobium japonicum, que recentemente foi subdividida em B. japonicum e B. elkanii (Kuykendall et al., 1992). Graças ao programa de seleção e melhoramento da soja no Brasil que levou em consideração a capacidade de a planta fixar N<sub>2</sub>, a recomendação atual para o cultivo da soja é a da utilização de inoculante sem a suplementação com fertilizante nitrogenado. Calcula-se com o uso dessa técnica uma economia para o país de cerca de 1 bilhão de dólares por ano (Hungria et al., 1994).

Desde os primeiros estudos sobre a FBN, ficou evidente que a eficiência da fixação era altamente dependente do genótipo da planta (Wilson, 1940), e foi relacionada com a capacidade fotossintética, balanco hormonal, atividade das enzimas responsáveis pela assimilação do nitrogênio, entre outros fatores (Wilson, 1940; Hardy & Havelka, 1976; Neves & Hungria, 1987). No Brasil, embora os estudos pioneiros tenham citado diferenças entre cultivares de soja na eficiência da simbiose (Döbereiner & Arruda, 1967; Brose et al., 1979; Vargas et al., 1982), poucos trabalhos vêm sendo conduzidos, nos últimos anos, para avaliar a variação entre genótipos de soja brasileiros quanto à eficiência do processo. Todavia, tanto no Brasil como no exterior diversos laboratórios têm envidado esforços na obtenção de estirpes de Bradyrhizobium mais eficientes, seja por seleção natural, seja pelo emprego de novas técnicas de biologia molecular (Peres et al., 1984; Triplett & Sadowsky, 1992; Vargas et al., 1992). Quase sempre, porém, é impossível introduzir essas estirpes no solo via inoculação, visto que a população microbiana ali estabelecida, incluindo estirpes ineficientes de rizóbio, fungos e actinomicetos, é altamente competitiva (Triplett & Sadowsky, 1992).

Para solucionar o problema da competitividade e melhorar o desempenho simbiótico, vêm sendo empregadas estratégias que envolvem estudos com a planta e com as bactérias. Estudos com as bactérias incluem a seleção ou a construção genética de estirpes com maior eficiência de fixação do N<sub>2</sub> e capacidade competitiva, a inoculação de estirpes em concentrações elevadas e inoculações maciças por períodos prolongados (Dunigan et al., 1984; Oliveira & Vidor, 1984; Triplett & Sadowsky, 1992).

Na planta as investigações incluem, em relação à competitividade, o desenvolvimento de cultivares que excluem ou restringem a nodulação por algumas estirpes. Nos Estados Unidos, por exemplo, já foram relatados três genes dominantes responsáveis pela restrição da nodulação da soja americana aos sorogrupos das estirpes estabelecidas no solo: Ri2 (Caldwell, 1966; Vest et al., 1973), Rj3 (Vest et al., 1973) e Ri4 (Vest et al., 1972, 1973; Devine, 1976; Devine et al., 1990), e um gene recessivo que determina a não-nodulação com todos os sorogrupos (Williams & Lynch, 1954). As informações sobre a incompatibilidade entre os parceiros simbióticos podem ser úteis nos programas de melhoramento, com a finalidade de excluir a nodulação com estirpes indesejáveis estabelecidas no solo.

Com o cultivo sucessivo da soja no Brasil, as estirpes utilizadas nos inoculantes se estabeleceram no solo e, hoje, de um modo similar aos Estados Unidos, poucas são as áreas sem uma população rizobiana elevada. Compilando alguns levantamentos, Hungria et al. (1994) constataram que dominam nos solos brasileiros os sorogrupos das estirpes SEMIA 566, SEMIA 5019 (=29w) e SEMIA 587, caracterizadas pela competitividade elevada. Não há estudos, porém, sobre incompatibilidade de genótipos de soja com esses sorogrupos de bactérias. O único relato de incompatibilidade se refere à cultivar IAC-2, que foi largamente empregada na Região do Cerrado e que restringia a nodulação com a estirpe SEMIA 586 (=CB 1809), proveniente da Austrália (Peres, 1979).

Este trabalho foi desenvolvido com o objetivo de investigar genótipos de soja quanto à eficiência da FBN e quanto à restrição da nodulação com as estirpes predominantes nos solos brasileiros.

## MATERIAL E MÉTODOS

#### Estirpes de Bradyrhizobium

Foram utilizadas três estirpes de Bradyrhizobium elkanii: SEMIA 566, SEMIA 587 e SEMIA 5019. As bactérias foram recebidas do banco de germoplasma de rizóbio da FEPAGRO (Fundação Estadual de Pesquisa Agropecuária, Porto Alegre, RS), avaliadas quanto à pureza e mantidas em meio de extrato de levedura-manitol-ágar a 4°C (Vincent, 1970). Determinou-se, pela contagem em placas, que o final da fase logarítmica das três bactérias ocorria após o quinto dia de crescimento, a 28°C, atingindo a concentração de 10° células/mL. A correspondência entre a contagem em placas e a densidade ótica foi calculada e, para cada plantio, as bactérias foram padronizadas para essa concentração.

#### Cultivares de soja

Utilizaram-se 152 cultivares de soja [Glycine max (L.) Merr.] do banco de germoplasma da Embrapa-CNPSo (Tabela 1). Parte das cultivares avaliadas neste trabalho foi recomendada para plantio nos últimos quatro anos agrícolas, outras se achavam em fase final de avaliação, e outras foram amplamente cultivadas por ocasião do desenvolvimento dessa cultura no país.

#### Condução dos experimentos

A avaliação foi realizada em condições axênicas, isto é, na ausência de outros microrganismos, em casa de vegetação, na Embrapa-CNPSo, Londrina, PR. As sementes foram desinfectadas com álcool a 80% e hipoclorito de sódio a 10%, lavadas com água deionizada estéril e submetidas à inoculação, com cada uma das estirpes, com 1 mL de inoculante líquido/semente e com 108 células de rizóbio/mL. As sementes com baixa germinação foram pré-germinadas, em câmara de germinação, a 25°C, por dois dias.

Os ensaios foram conduzidos em blocos ao acaso, com três repetições. Cada um dos três blocos foi plantado separadamente, consistindo de 456 vasos (152 cultivares x três estirpes) por bloco. O intervalo de plantio entre blocos foi de dez dias.

O plantio foi realizado em vasos de Leonard modificados contendo areia e vermiculita (1/2, v/v) e solução nutritiva isenta de N, com pH ajustado a 6,8, segundo Andrade & Hamakawa (1994). Cinco sementes de cada cultivar foram plantadas por vaso e procedeu-se ao desbaste aos sete dias após o plantio, deixando-se duas plantas por vaso. As condições de crescimento foram controladas, com temperatura de 28/23°C (dia/noite) e regime de luminosidade de 12 horas/12 horas (dia/noite).

As plantas foram coletadas cinco semanas após o plantio, um a dois dias antes do florescimento. Com isso, pretendeu-se uniformizar o período de avaliação, pois, embora as cultivares pertencessem a grupos de maturação diferentes, a coleta antes do florescimento permitiu a avaliação da capacidade de nodulação e fixação do N2 no estádio crítico do pré-florescimento, quando a simbiose se estabelece com massa nodular máxima, sem que ainda tenha iniciado o processo de senescência dos nódulos. Procurou-se evitar, ainda, qualquer efeito hormonal ligado ao florescimento e que afete a fixação do N2. As plantas foram separadas em parte aérea, raiz e nódulos. Avaliaram-se o número, distribuição e massa de nódulos nas raízes principal e laterais e a massa da parte aérea e raízes secas. Para a determinação da massa, o material foi seco a 65°C até atingir massa constante. O N na parte aérea foi avaliado pelo método espectrofotométrico do azul de indofenol (Feije & Anger, 1972).

Os experimentos foram analisados pelo delineamento de blocos ao acaso, com o programa SANEST (PC) (Zonta et al., 1982), utilizando-se o teste de Tukey a 5% de probabilidade e o JUMP-IN (SAS para Macintosh) para os gráficos e correlações.

### RESULTADOS E DISCUSSÃO

Os parâmetros número de nódulos (NN), massa da parte aérea seca (MPAS), massa dos nódulos secos (MNS) e nitrogênio total da parte aérea (NTPA) estão apresentados nas Tabelas 2, 3 e 4. Como hoje já se tem, na maioria das áreas cultivadas com a soja, um mapeamento dos sorogrupos dominantes, os resultados são expostos por estirpe com o objetivo de fornecer informações sobre o desempenho com cada estirpe. Ao utilizar uma análise do desempenho de todas as cultivares com todas as estirpes constatou--se, também, o efeito da estirpe e da interação cultivar x estirpe; a Tabela 5 mostra os dados relativos às fontes de variação e aos quadrados médios. Os resultados relativos ao efeito de estirpes não são discutidos, pois não era o objetivo deste trabalho. Quanto ao efeito da interação, constatou-se que as interações causaram modificações pequenas. Por exemplo: uma cultivar classificada no segundo quartil com uma estirpe poderia passar para o terceiro quartil com outra estirpe, mas em nenhum caso, do primeiro quartil para o último, ou vice-versa.

TABELA 1. Cultivares de soja utilizadas nos experimentos, genealogia e tempo de maturação em Londrina, Embrapa-CNPSo.

| Cultivares       | Nome fantasia | Genealogia                                    | Maturação<br>(dias) <sup>1</sup> |
|------------------|---------------|-----------------------------------------------|----------------------------------|
| Andrews          | *             | Desconhecida (provável seleção em Santa Rosa) | 132                              |
| BA BR-31         |               | UFV-1 X M-4-1                                 | 138                              |
| Bossier          |               | Mutação natural em Lee                        | 121                              |
| 3R-1             |               | Hill X L-356 (seleção de pubescência cinza)   | 119                              |
| 3R-2             |               | Hill X Hood                                   | 103                              |
| BR-3             |               | Hampton X Campos Gerais                       | 121                              |
| 3R-4             |               | Hill X Hood                                   | 116                              |
| BR-5             |               | Hill X Hood                                   | 115                              |
| BR-6             | Nova Bragg    | Bragg (3) X Santa Rosa                        | 115                              |
|                  | INOVA DIAGE   | Hardee X Hill                                 | 115                              |
| BR-7             | Pelotas       | Benville X Hampton                            | 123                              |
| BR-8             | Pelotas       |                                               | 118                              |
| BR-12            |               | Benville X Hood                               | 114                              |
| BR-13            | Maravilha     | Bragg (4) X Santa Rosa                        |                                  |
| BR-14            | Modelo        | Santa Rosa X Campos Gerais                    | 118                              |
| BR-15            | Mato Grosso   | Santa Rosa X LoD 76-761                       | 149                              |
| BR-16            | •             | D 69-B 10-M 58 X Davis                        | 112                              |
| BR-23            |               | Bossier X Paraná                              | 118                              |
| BR-24            | ٠,            | Davis X Paraná                                | 110                              |
| BR-27            | Cariri        | BR 78-22043 X (Bragg X IAC 73-2736)           | 142                              |
| BR-28            | Seridó        | Santa Rosa X BR 78-11202                      | 163                              |
| BR-29            | Londrina      | Davis X BR-5                                  | 118                              |
| BR-30            |               | União (2) X Lo 76-1763                        | 125                              |
| BR-32            |               | IAS-4 X BR-1                                  | 145                              |
| BR-35            | Rio Balsas    | Seleção em Cristalina                         | 112                              |
| BR-36            |               | IAS - 4 (2) X BR 78-22043                     | 120                              |
| BR-37            |               | União (2) X Lo 76-1763                        | 130                              |
| BR-38            |               | FT-2 X União                                  | 130                              |
| BR/EMGOPA-312    | Potionar      | Paranagoiana X Cristalina                     | nd²                              |
| Bragg            | , I Vugum,    | Jackson X D 49-2491                           | 115                              |
| CAC-1            |               | Seleção em IAC-8                              | 123                              |
|                  | Albert Ger    | Arksoy X Ogden                                | 107                              |
| Campos Gerais    |               |                                               | 114                              |
| CEP 10           | G1            | IAS 2 X 070-3185                              |                                  |
| CEP 12-Cambará   | Cambará       | Bragg X Hood                                  | 114                              |
| CEP 20-Guajuvira | Guajuvira     | CTS 132 X Forrest                             | 147                              |
| Cobb             |               | F 57-735 X D 58-3358                          | 129                              |
| Davis            | 1             | D 49-2573 X N 45-1497                         | 113                              |
| Doko             |               | Seleção na população RB 72-1                  | 141                              |
| Dourados         |               | Seleção em Andrews                            | 131                              |
| EMBRAPA 1        | IAS 5 RC      | IAS-5 (6) X Paranaiba                         | nd nd                            |
| EMBRAPA 2        |               | PF 72393 X Paranaiba                          | 128                              |
| EMBRAPA 3        |               | BR-5 X BR 78-4446-3                           | 131                              |
| EMBRAPA 4        | BR-4 RC       | BR-4 (6) X Paranaíba                          | nd                               |
| EMBRAPA 5        | •             | BRB 358                                       | 127                              |
| EMBRAPA 9        | Bays          | Lancer X BR 79-251-1                          | 125                              |
| EMGOPA-301       | •             | IAC-4 X Jupiter                               | 143                              |
| EMGOPA-302       | •             | Paraná X Mandarin                             | 111                              |
| EMGOPA-303       |               | IAC 73-2736-10 X IAC-6                        | 147                              |
| EMGOPA-304       | Campeira      | Paraná X Mandarin                             | 125                              |
| EMGUPA-304       | Campeira      | ratana A Mandarin                             | 123                              |

TABELA 1. Continuação.

| Cultivares              | Nome fantasia                | Genealogia                                  | Maturação<br>(dias) <sup>1</sup> |
|-------------------------|------------------------------|---------------------------------------------|----------------------------------|
| EMGOPA-305              | Caraiba                      | Tropical X Cristalina                       | 112                              |
| EMGOPA-306              | Chapada                      | Seleção em EMGOPA-301                       | 150                              |
| EMGOPA-307              | Caiapó                       | GO 79-3090 X Paranagoiana                   | 140                              |
| EMGOPA-309              | Goiana                       | BRB 214                                     | 116                              |
| EMGOPA-313              |                              | IAC-7 X (Santa Rosa X Go 79-30681)          | nđ :                             |
| FT-1                    |                              | Seleção em Sant'Ana                         | nd                               |
| FT-2                    |                              | Seleção em IAS-5                            | 115                              |
| FT-3                    |                              | Seleção em Flórida                          | 115                              |
| FT-4                    |                              | D 65-3076 X D 64-4636                       | 119                              |
| FT-5                    | Formosa                      | PR 9510 X Sant'Ana                          | 126                              |
| FT-6                    | Veneza                       | PR 9510 X Prata                             | 114                              |
| FT-7                    | Tarobá                       | FT-8184 (=FT-4) X Davis                     | : 111                            |
| FT-8                    | Araucaria                    | Cobb X Planalto                             | : 130                            |
| FT-9                    | Inaê                         | FT-8184 (=FT-4) X Davis                     | 113                              |
| FT-10                   | Princesa                     | PR 9510 X Sant Ana                          | 123                              |
| FT-11                   | Alvorada                     | UFV-1 X Campos Gerais                       | 138                              |
| FT-12                   | Kissei                       | PR 9510 X Prata                             | 114                              |
| FT-14                   | Piracema                     | PR 9510 X Sant'Ana                          | 126                              |
| FT-16                   | 1 Maccina                    | FT-440 X Campos Gerais                      | 126                              |
| FT-17                   | Bandeirante                  | Seleção em FT-2                             | 121                              |
| FT-18                   | Xavante                      | PR 9510 X Prata                             | 121                              |
| FT-19                   | Macacha                      | Santa Rosa X (Seleção em Cajeme X São Luiz) | 151                              |
| FT-20                   | Jaú                          | FT 184 (=FT-4) X Davis                      | 111                              |
| FT-Abyara               | 744                          | União X Sant'Ana                            | 121                              |
| FT-Bahia                |                              | Seleção em Cristalina                       | 149                              |
| FT-Canarana             | na es Promisione de la compa | Cristalina X FT-1                           | 151                              |
| FT-Cometa               |                              | FT-420 X Williams                           | 102                              |
| FT-Cristalina           |                              | Seleção em UFV-1                            | 149                              |
| FT-Estrela              |                              | Linhagem M-2 X FT-1                         |                                  |
| FT-Estrela<br>FT-Eureka |                              |                                             | 126                              |
| FT-Eureka<br>FT-Guaira  |                              | Paraná X (PI 346304 X Paraná)               | 115                              |
|                         |                              | Lancer X União                              | 111                              |
| FT-Jatobá               |                              | PR 9510 X Sant'Ana                          | 123                              |
| FT-Manacá               |                              | FT-907 X Lancer                             | 113                              |
| FT-Maracajú             |                              | PR 9510 X Sant'Ana                          | 130                              |
| FT-Seriema              | A 8                          | Linhagem M-2 X FT-1                         | 149                              |
| GO BR-25                | Aruanā                       | E 77-510-3 X BR 78-11,202                   | 129                              |
| IAC -2                  |                              | La 41-1219 X Yelnanda                       | 114                              |
| IAC -4                  |                              | IAC-2 X Hardee                              | 129                              |
| IAC -5                  | *                            | Seleção na população FB-59-1                | 126                              |
| IAC-6                   | •                            | Seleção na população RB 72-1                | 151                              |
| IAC -7                  | •                            | Seleção na população RB 72-1                | 129                              |
| IAC -8                  |                              | Bragg X E 70-51                             | 129                              |
| IAC-9                   |                              | Seleção na população RB 72-1                | 139                              |
| IAC-11                  |                              | Paraná X (Davis X IAC 73-1364)              | 131                              |
| IAC-12                  |                              | Paraná X IAC 73-231                         | 114                              |
| IAC-13                  | •                            | Paraná X IAC 73-231                         | 114                              |
| IAC-15                  |                              | IAC 77-3086 X Paraná                        | 126                              |
| IAC-16                  |                              | Bulk B-5                                    | 135                              |
| IAC -100                |                              | IAC 78-2318 X IAC-12                        | 125                              |

TABELA 1. Continuação.

| Cultivares     | Nome fantasia | Genealogia                                                 | Maturação<br>(dias) |
|----------------|---------------|------------------------------------------------------------|---------------------|
| IAC -Foscarin  |               | Seleção em Foscarin                                        | 112                 |
| IAC-PL-1       |               | $nd^2$                                                     | nd                  |
| IAS 4          |               | Hood X Jackson                                             | 115                 |
| IAS 5          |               | Hill X D 52-810                                            | 108                 |
| Invicta        | ( * *         | Lancer X ESSEX                                             | 111                 |
| IPAGRO 20      | ·             | (Santa Rosa X Asksoy) X (Majos X Kanro)                    | 112 .               |
| IPAGRO 21      |               | (Forrest X Hood X Lousiania)                               | 114                 |
| Ivai           |               | Majos X Hood                                               | 123                 |
| J-200          |               | IAC-2 X Viçoja                                             | 128                 |
| Lancer         |               | Paraná X Hampton 266                                       | nd -                |
| MG BR-22       | Garimpo       | Bossier X Paraná                                           | 121                 |
| MS BR-17       | São Gabriel   | Lo 76-732 X LoD 76-736                                     | 134                 |
| MS BR-18       | Guavira       | Cruzamento natural em Viçoja                               | 124                 |
| MS BR-19       | Pequi         | D 69-442 X (Bragg X Santa Rosa)                            | 125                 |
| MS BR-20       | Ipê           | D 69-6344 X (Bragg X Santa Rosa)                           | 124                 |
| MS BR-21       | Buriti        | São Luiz X Davis                                           | 128                 |
| MS BR-34       | EMPAER-10     | D 64-4636 X IAC-7                                          | 129                 |
| MS BR-39       | Chapadão      | Doko X M-4-1                                               | 119                 |
| Nova IAC-7     | Спорасио      | Seleção em IAC-7                                           | 148                 |
| Numbaíra       |               | Davis X IAC 71-1113                                        | 138                 |
| OCEPAR 2       | Iapó          | Hampton 208 X Davis                                        | 116                 |
| OCEPAR 3       | Primavera     | (Halesoy X Volstate) X (Hood X Rhosa)                      | 106                 |
| OCEPAR 4       | Iguaçu        | R 70-733 X Davis                                           | 112                 |
| OCEPAR 5       | Piquiri       | Coker 136 X Co 72-260                                      | 107                 |
| OCEPAR 6       | 1 idmit       | (PI 230.979 X Lee 68) X [(Davis X Bragg) X (Dare X Davis)] | 109                 |
| OCEPAR 7       | Brilhante     | Seleção em IAS 5                                           | 113                 |
| OCEPAR 8       | Dimante       | Seleção em Paraná                                          | 112                 |
| OCEPAR 9       | SS 1          | Mutação natural em Paraná                                  | 121                 |
| OCEPAR 10      | 20 1          | Paraná X União                                             | 111                 |
| OCEPAR 11      |               | Davis X Paraná                                             | 118                 |
| OCEPAR 13      |               | FT-2 X União                                               | 118                 |
| OCEPAR 14      |               | Davis X União                                              | 112                 |
| Paraná         |               | Hill X D 52-810                                            | 102                 |
| Paranagoiana   |               | Mutação natural em Paraná                                  | 134                 |
| Paranaiba      |               | Davis X IAC 72-2211                                        | 112                 |
| Pérola         |               | nd                                                         | nd                  |
| Planalto       |               | Hood X Kedelle STB n.452                                   | 111                 |
| RS 5-Esmeralda |               | nd                                                         | 121                 |
|                |               |                                                            |                     |
| RS 6-Guassupi  | Years         | Ivaí X Lee<br>Ivoera X PI 80837                            | 147                 |
| RS 7           | Jacuí         |                                                            | 136                 |
| Santa Rosa     |               | D 49-772 X LA 41-1219                                      | 128                 |
| Sertaneja      |               | Paraná X Hampton 266                                       | 116                 |
| SP/BR-41       |               | nd                                                         | nd                  |
| Stuart         |               | nd                                                         | nd ·                |
| Tiaraju        |               | Industrial X Asomusume                                     | 131                 |
| Timbira        |               | Seleção na população RB 72-1                               | 162                 |
| Tropical       |               | Hampton X E 70-51                                          | 155                 |
| UFV-1          |               | Mutação natural em Viçoja                                  | 138                 |
| UFV-5          |               | Mineira X UFV-1                                            | 152                 |

TABELA 1. Continuação.

| Cultivares | Nome fantasia | Genealogia                       | Maturação<br>(dias) <sup>1</sup> |
|------------|---------------|----------------------------------|----------------------------------|
| UFV-8      | Monte Rico    | (IAC-2 X Hardee) X UFV-1         | 141                              |
| UFV-9      | Sucupira      | Seleção em UFV-1                 | 149                              |
| UFV-10     | Uberaba       | Santa Rosa X UFV-1               | 160                              |
| UFV/ITM-1  | ,             | Paraná X Vicoja                  | 151                              |
| União      |               | D 65-2874 X Hood                 | 113                              |
| Viçoja     |               | D 49-2491 (2) X Improved Pelican | nd                               |

<sup>1</sup> Grupos de maturação: precoce (100 a 115 dias); semiprecoce (116 a 125 dias); médio (126 a 137 dias); semitardio (138 a 150 dias); tardio (>150 dias). Maturação para a região de Londrina, podendo variar com a época do ano.

TABELA 2. Efeito da inoculação de 152 cultivares de soja com a estirpe de R. elkanii SEMIA 5019 (=29w). Os parâmetros analisados foram: número de nódulos (NN, nód/pl.), massa da parte aérea seca (MPAS, g/pl.), massa de nódulos secos (MNS, mg/pl.) e nitrogênio total da parte aérea (NTPA, mgN/pl.). Experimento conduzido em condições axênicas de casa de vegetação. Média de três repetições. As plantas foram coletadas cinco semanas após o plantio!,

| Cultivares -      | NN      | MPAS          | MNS       | NTPA       | Cultivares  | NN          | MPAS                       | MNS                | NTPA                     |
|-------------------|---------|---------------|-----------|------------|-------------|-------------|----------------------------|--------------------|--------------------------|
| Andrews           | 54 ab   | 1,79 abcdef   | 280 abc   | 71 abcdef  | Doko        | 40 ab       | 1,01 abcdef                | 149 abc            | 31 abcdefs               |
| BA BR-31          | 52 ab   | 1,82 abcdef   | 284 abc   | 67 abcdefg |             | 49 ab       | 1,61 abcdef                | 252 abc            | 53 abodefs               |
| Bossier           | 53 ab   | 1,90 abcd     | 274 abç   | 68 abodef  | EMBRAPA I   | 35 ab       | 1,90 abcdef                | 255 abc            | 68 abodefs               |
| 3R-1              | 53 ab   | 1,34 abcdef   | 219 abc   |            | EMBRAPA 2   | . 43 ab     | 1,67 abcdef                | 220 abc            | 63 abcdefs               |
| 3R-2              | 48 ab   | 1,32 abcdef   | 184 abc   |            | EMBRAPA 3   | . 44 ab     | 1,63 abcdef                | 197 abc            | 59 abcdefy               |
| 3R-3              | 84 a    | 1,55 abcdef   | 205 abc   |            | EMBRAPA 4   | : 64 ab     | 1,81 abcdef                | 304 ab             | 65 abcdefs               |
| 3R-4              | 53 ab   | 1,37 abcdef   | 194 abc   | 39 abcdefg | EMBRAPA 5   | 38 ab       | 1,31 abcdef                | 187 abc            | 47 abcdefs               |
| 3R-5              | 43 ab   | 1,44 abcdef   | 187 abc   |            | EMBRAPA 9   | 36 ab       | 0,59 cdeff                 | 70 c               | 13 fg                    |
| 3R-6              | 52 ab   | 1,22 abodef   | 202 abç   |            | EMGOPA301   | ∙43 ab      | 1,37 abcdef                | 262 abc            | 44 abcdefs               |
| 3R-7              | 41 ab   | 0,56 def      | 94 abc    | 17 defg    | EMGOPA302   | 61 ab       | 1.68 abcdef                | 252 abc            | 43 abcdefs               |
| 3R-8              | 43 ab   | 1,36 abcdef   | 182 abc   | 51 abcdefg | EMGOPA303   | 55 ab       | 1,38 abcdef                | 260 abc            | 37 abcdefg               |
| 3R-12             | 35 ab . | . 1,14 abcdef | 225 abc . | 39 abcdefg | EMGOPA304   | 45 ab       | 1,75 abcdef                | 205 abc            | 56 abcdefa               |
| 3R-13             | 54 ab   | 1,25 abodef   | 237 abc   | 44 abcdefg | EMGOPA305   | 56 ab       | 1.74 abcdef                | 190 abc            | 60 abcdefg               |
| 3R-14             | 62 ab   | 1,57 abcdef   | 274 abc   | 53 abcdefg | EMGOPA306   | 47 ab       | 1,31 abcdef                | 214 abc            | 39 abcdefa               |
| 3R-15             | 39 ab   | - 1,08 abcdef | 157 abc   | 29 abcdefg | EMGOPA307 ~ | ··· 41 ab - | 1,37 abcdef                | 204 abc            | 48 abcdefg               |
| 3R-16             | 42 ab   | 1,07 abcdef   | 175 abc   |            | EMGOPA309   | 55 ab       | 0,50 ef                    | 100 abc            | 17 efg                   |
| 3R-23             | 50 ab   | 1,14 abcdef   | 180 abc   | 44 abcdefg | EMGOPA313   | 47 ab       | 0,77 bcdef                 | 152 abc            | 23 abcdefi               |
| 3R-24             | 36 ab   | 1,49 abcdef   | 202 abc   | 52 abcdefg |             | 69 ab       | 1,44 abcdef                | 244 abc            | 42 abcdefi               |
| 3R-27             | 48 ab   | 1,77 abcdef   | 240 abc   | 57 abcdefg | FT-2        | 38 ab       | 1,24 abcdef                | 220 abc            | 34 abcdef                |
| 3R-28             | 48 ab   | 0,68 bcdef    | 155 abc   | 14 fg      | FT-3        | 47 ab       | 1,64 abodef                | 280 abc            | 58 abcdefs               |
| 3R-29             | 45 ab   | 1,75 abcdef   | 240 abc   | 65 abcdefg | FT-4        | 43 ab       | 1,56 abodef                | 230 abc            | 54 abodels               |
| 3R-30             | 61 ab   | 1,37 abcdef   | 275 abc   | 50 abcdefg |             | 46 ab       | 1.51 abodef                | 209 abc            | 43 abcdefg               |
| 3R-32             | 36 ab   | 0,78 bcdef    | 159 abc   | 18 defg    | FT-6        | 60 ab       | 2,05 ab                    | 280 abc            | 74 abcde                 |
| 3R-35             | 22 b    | 0,58 cdef     | 95 abc -  | 18 cdefg   | FT-7        | 44 ab       | 1,22 abcdef                | 197 abc            | 41 abcdefa               |
| 3R-36             | 43 ab   | 1,61 abcdef   | 214 abc   | 48 abcdefg | FT-8        | 63 ab       | 1,63 abcdef                | 274 abc            | 47 abcdefs               |
| 3R-37             | 76 ab   | 1,38 abcdef   | 230 abc   | 50 abcdefg |             | 38 ab       | 1,35 abcdef                | 187 abc            | 53 abodefg               |
| 3R-38             | 32 ab   | 1,14 abcdef   | 144 abc   | 35 abodefg | FT-10       | 42 ab       | 1,41 abcdef                | 204 abc            | 53 abcdefg               |
| R/EMGOPA-312      | 59 ab   | 1,56 abcdef   | 247 abc   | 46 abcdefg | FT-11       | 67 ab       | 1.53 abcdef                | 257 abc            | 53 abcdefg               |
| Bragg             | 46 ab   | 1,65 abcdef   | 250 abc   | 59 abcdefg |             | 44 ab       | 1,41 abcdef                | 219 abc            | 44 abcdefg               |
| AC-I              | 45 ab   | 1.05 abcdef   | 139 abc   | 24 abcdefg |             | 60 ab       | 2,00 ab                    | 279 abc            | 77 abc                   |
| Campos Gerais     | 53 ab   | 1,36 abcdef   | 219 abc   | 48 abcdefg |             | 39 ab       | 1,16 abcdef                | 152 abc            | 42 abcdefe               |
| EP 10             | 48 ab   | 1,62 abcdef   | 209 abc   | 57 abodefg |             | 47 ab       | 1.11 abcdef                | 230 abc            | 36 abcdefg               |
| CEP 12 - Cambará  | 48 ab   | 1,41 abcdef   | 232 abc   | 49 abcdefg |             | 67 ab       | 0.99 abcdef                | 127 abc            | 37 abcdefe               |
| EP 20 – Guajuvira | 46 ab   | 0.94 abcdef   | 147 abc   | 23 abcdefg |             | 58 ab       | 1.18 abcdef                | 224 abc            |                          |
| Cobb              | 42 ab   | 1,02 abcdef   | 147 abc   | 35 abcdefg |             | 51 ab       | 1.68 abcdef                | 224 abc<br>222 abc | 42 abcdefg               |
| Davis             | 46 ab   | 1.69 abcdef   | 244 abc   | 68 abcdefg |             | 61 ab       | 1,54 abcdef                | 222 abc<br>260 abc | 72 abcdef                |
| T-Bahia           | 71 ab   | 1,95 abcd     | 277 abc   | 66 abodefg |             | 50 ab       | 1,54 abcder                |                    | 55 abcdefg               |
| T-Canarana        | 48 ab   | 0.88 abcdef   | 167 abc   | 23 abcdefg |             | 30 ab       | 1,07 abcder                | 177 abc            | 37 abcdefg               |
| T-Cometa          | 67 ab   | 1,22 abcdef   | 190 abc   |            | Nova IAC-7  | 50 ab       | -,                         | 174 abc            | 36 abcdefg               |
| T-Cristalina      | 57 ab   | 1.57 abodef   | 285 abc   | 52 abcdefg |             | 58 ab       | 1,49 abcdef<br>1,42 abcdef | 239 abc<br>239 abc | 63 abcdefg<br>58 abcdefg |

<sup>&</sup>lt;sup>2</sup> Informação não-disponível.

TABELA 2. Continuação.

| Cultivares   | NN    | MPAS        | MNS       | NTPA       | Cultivares     | NN      | MPAS        | MNS       | NTPA -       |
|--------------|-------|-------------|-----------|------------|----------------|---------|-------------|-----------|--------------|
| FT-Estrela   | 46 ab | 1,59 abcdef | 259 abc   | 54 abcdefg | OCEPAR 2       | 38 ab   | 0,98 abcdef | 140 abc   | 35 abcdefg   |
| FT-Eureka    | 46 ab | 1.75 abcdef | 304 ab    | 61 abcdefg | OCEPAR 3       | 60 ab   | 1,52 abcdef | 250 abc   | 56 abcdefg   |
| FT-Guaira    | 57 ab | 1.96 abc    | 244 abc   | 66 abcdefg | OCEPAR 4       | 54 ab   | 1,60 abcdef | 289 abc   | 62 abcdefg   |
| FT-Jatobá    | 55 ab | 1.48 abcdef | 214 abc   | 47 abcdefg | OCEPAR 5       | 32 ab   | 0,95 abcdef | 167 abc   | 26 abcdefg   |
| FT-Manacá    | 60 ab | 1.57 abcdef | 244 abc   | 62 abcdefg | OCEPAR 6       | 50 ab   | 1,69 abcdef | 292 abc   | 51 abcdefg   |
| FT-Maracajú  | 35 ab | 1,37 abcdef | 159 abc   | 47 abcdefg | OCEPAR 7       | . 42 ab | 1,52 abcdef | 264 abc   | 51 abcdefg   |
| FT-Seriema   | 43 ab | 1.34 abcdef | 207 abc   | 50 abodefg | OCEPAR 8       | 46 ab   | 1,32 abcdef | 207 abc   | 50 abcdefg   |
| GO BR-25     | 56 ab | 1.71 abcdef | 195 abc   | 66 abcdefg | OCEPAR 9       | 44 ab   | 1,24 abcdef | 147 abc   | 43 abcdefg , |
| IAC-2        | 60 ab | 1.55 abcdef | 227 abc   | 57 abcdefg | OCEPAR 10      | 46 ab   | 0,74 bcdef  | 95 abc    | 25 abcdefg   |
| IAC-4        | 45 ab | 1,43 abcdef | 205 abc   |            | OCEPAR 11      | 43 ab   | 1,67 abcdef | 255 abc   | 55 abcdefg   |
| IAC -5       | 42 ab | 1.39 abcdef | 255 abc   | 54 abcdefg | OCEPAR 13      | 52 ab   | 1,29 abcdef | 219 abc   | 44 abcdefg   |
| IAC-6        | 51 ab | 1.22 abcdef | 194 abc   | 44 abcdefg | OCEPAR14       | 66 ab   | 1,16 abcdef | 237 abc   | 40 abcdefg   |
| IAC-7        | 48 ab | 1.52 abodef | 234 abc   | 65 abcdefg | Pérola         | 49 ab   | 1,38 abcdef | 222 abc   | 45 abcdefg   |
| IAC-8        | 42 ab | 1,71 abcdef | 284 abc   | 66 abcdefg | Paraná         | 56 ab   | 1,37 abcdef | 217 abc   | 41 abcdefg   |
| IAC-9        | 43 ab | 1,99 ab     | 282 abc   | 76 abcd    | Paranaiba      | 36 ab   | 1,14 abcdef | 195 abc   | 31 abcdefg   |
| IAC-11       | 58 ab | 1.15 abcdef | 207 abc   | 43 abcdefg | Paranagoiana   | 30 ab   | 0,43 f      | , 80 bc   | 9 g          |
| IAC-12       | 50 ab | 1.36 abcdef | 220 abc   | 53 abcdefg | Planalto       | 40 ab   | 0,72 bcdef  | 119 abc   | 20 cdefg     |
| IAC-13       | 58 ab | 1.72 abcdef | 250 abc   | 63 abcdefg | RS 5 Esmeralda | 56 ab   | 1,29 abcdef | 187 abc   | 42 abcdefg   |
| IAC-15       | 56 ab | 1,47 abodef | 220 abc   | 56 abcdefg | RS 6 Guassupi  | 34 ab   | 1,48 abcdef | 234 abc   | 41 abcdefg   |
| IAC-16       | 35 ab | 0.91 abcdef | 152 abc   | 33 abcdefg | RS 7           | 52 ab   | 1,36 abcdef | . 214 abc | 52 abcdefg   |
| IAC-100      | 36 ab | 1,28 abcdef | 164 abc   | 43 abcdefg | Santa Rosa     | 56 ab   | 1,84 abcde  | 310 a ,   | 68 abcdefg   |
| IAC-Foscarin | 48 ab | 1,82 abcdef | 289 abc   | 69 abcdef  | Sertaneja      | 51 ab   | 1,64 abcdef | 234 abc   | 55 abcdefg   |
| IAC-PL-I     | 48 ab | 1,85 abcde  | 274 abc   | 65 abcdefg | SP BR-41       | 50 ab   | 1,51 abcdef | 252 abc   | 43 abcdefg   |
| IAS 4        | 38 ab | 1,33 abcdef | . 194 abc | 49 abcdefg | Stuart         | 61 ab   | 1,92 abcd   | 295 abc   | 71 abcdef    |
| IAS 5        | 39 ab | 1,41 abcdef | 202 abc   | 50 abcdefg | Tiaraju        | 50 ab   | 1,63 abcdef | 230 abc   | 65 abcdefg   |
| Invicta      | 66 ab | 1,12 abcdef | 224 abc   | 40 abcdefg | Timbira        | 44 ab   | 1,20 abcdef | 175 abc   | 32 abcdefg   |
| IPAGRO 20    | 32 ab | 1,10 abcdef | 165 abc   | 44 abcdefg | Tropical       | 39 ab   | 0,99 abcdef | 134 abc   | 28 abcdefg   |
| IPAGRO 21    | 70 ab | 1,61 abcdef |           | 56 abcdefg |                | 38 ab   | 1,19 abcdef | 212 abc   | 33 abcdefg   |
| Ivaí         | 46 ab | 2,07 ab     | 315 a     | 79 ab      | UFV-5          | 38 ab   | 1,62 abcdef | 242 abc   | 59 abcdefg   |
| J-200        | 48 ab | 2,19 a      | 299 ab    | 81 a       | UFV-8          | - 63 ab | 1,52 abcdef | 254 abc   | 51 abcdefg   |
| Lancer       | 46 ab | 1,49 abcdef | 260 abc   | 56 abcdefg |                | 34 ab   | 0,81 abcdef | 207 abc   | 23 abcdefg   |
| MG BR-22     | 64 ab | 1,66 abcdef | 272 abc   | 65 abcdefg | UFV-10         | 29 ab   | 0,76 bodef  | 102 abc   | 22 bodefg    |
| MS BR-17     | 52 ab | 1,33 abcdef | 242 abc   | 47 abcdefg | UFV/ITM 1      | 48 ab   | 1,05 abcdef | 184 abc   | 33 abcdefg   |
| MS BR-18     | 42 ab | 1,75 abcdef | 275 abc   | 67 abodefg | União          | 40 ab   | 1,16 abcdef | 169 abc   | 35 abcdefg   |
| MS BR-19     | 41 ab | 1,82 abcdef | 204 abc   | 62 abcdefg | Vicoja         | 41 ab   | 1,26 abcdef | , 229 abc | 40 abcdefg   |
| MS BR-20     | 42 ab | 1,68 abcdef | 212 abc   | 59 abcdefg | Média          | - 49    | 1,39 :      | 215       | 48           |
| MS BR-21     | 51 ab | 1,62 abcdef | 254 abc   | 59 abcdefg | C.V.(%)        | - 32    | 27          | - 28      | 33           |

<sup>&</sup>lt;sup>1</sup> Médias seguidas pela mesma letra não diferiram estatisticamente pelo teste de Tukey (P ≤ 0,05). →

Consequentemente, os resultados da interação cultivar x estirpe também não são discutidos. Para fornecer mais informações sobre as cultivares com cada estirpe, são apresentados e discutidos os resultados de cada uma delas.

Na presença da estirpe SEMIA 5019, o maior e menor número de nódulos foram obtidos com as cultivares BR-3 (84 nód/pl.) e BR-35 (22 nód/pl.), respectivamente. A cultivar EMBRAPA 9 apresentou o pior desempenho quanto à MNS, com 70 mg/pl., enquanto a 'Ivaí' obteve a maior massa nodular, com 315 mg/pl. Foram, portanto, detectadas diferenças marcantes entre as cultivares quanto à nodulação, com uma diferença de quase quatro vezes no NN e de quatro vezes e meia na MNS, mas nenhuma delas restringiu completamente a forma-

ção dos nódulos pela SEMIA 5019. A cultivar J-200 mostrou os melhores resultados referentes ao NTPA, com 81,32 mg N/pl., enquanto o pior desempenho simbiótico foi constatado com a Paranagoiana (9,76 mg N/pl.) (Tabela 2).

A cultivar Bossier apresentou o maior NN, 70 nód./pl., quando inoculada com a estirpe SEMIA 566, e o melhor resultado quanto ao NTPA, com 76,33 mg/pl. (Tabela 3). Já a cultivar FT-Canarana teve o pior desempenho quanto ao NN, 22 nód./pl., MPAS, com 0,63 g/pl., MNS, com 72,70 mg/pl., e NTPA, com 25,07 mg/pl. (Tabela 3). A cultivar Bossier também apresentou boa nodulação com a estirpe SEMIA 587, acumulando 230,70 mg de nódulos/pl., que contribuíram com um acúmulo de 322,67 mg N/pl. Quanto ao NN

TABELA 3. Efeito da inoculação de 152 cultivares de soja com a estirpe de B. elkanii SEMIA 566. Os parâmetros analisados foram: número de nódulos (NN, nód./pl.), massa da parte aérea seca (MPAS, g/pl.), massa de nódulos secos (MNS, mg/pl.) e nitrogênio total da parte aérea (NTPA, mgN/pl.). Experimento conduzido sob condições axênicas de casa de vegetação. Média de três repetições. As plantas foram coletadas cinco semanas após o plantio1.

| Cultivares             | NN           | MPAS        | MNS         | NTPA       | Cultivares          | NN '       | MPAS      | MNS          | NTPA                         |
|------------------------|--------------|-------------|-------------|------------|---------------------|------------|-----------|--------------|------------------------------|
| Andrews                | 47 abcde     | 1,20 abcd   | 137 abcdef  | 49 abcde : |                     | 37 abcde   |           | 120 bodef    | 42 abcde                     |
| BABR-31                | 37 abcde     | 1.28 abcd   | 150 abcdef  | 53 abcde   | Dourados            | 45 abcde 1 | 1,16 abcd | 120 bcdef    | 54 abcde                     |
| Bossier 😭 🗀            | 70 a         | 1,64 ab     | 178 abcde   | 76 a       | EMBRAPA1            | 37 abcde   | 1,20 abcd | 149 abcdef   | 49 abcde                     |
| 3R-1                   | 32 abcde     | 0,95 abcd . | 116 bcdef   | 39 abcde   | EMBRAPA2            | 43 abcde   | 1,46 abcd | 201 abc      | 59 abcde                     |
| 3R-2                   | 50 abcde     | 0.77 cd     | 109 cdef    | 34 cde     | EMBRAPA3            | 44 abcde   | 1,08 abcd | 136 abcdef   | 41 abcde                     |
| 3R-3                   | 59 abcde     | 0,96 abcd   | 115 bcdef · | 42 abcde   | EMBRAPA4            | 44 abcde   | 1,35 abcd | 156 abcdef   | 54 abcde                     |
| 3R-4                   | 42 abcde     | 1,33 abcd   | 153 abcdef  | 54 abcde   | EMBRAPA5            | 44 abcde   | 1,02 abcd | 126 abcdef   | 46 abcde                     |
| 3R-5                   | 38 abcde     | 1,41 abcd   | 133 abcdef  | 50 abode   | EMBRAPA9            | 28 abcde   | 0,84 bcd  | 103 def      | 36 bcde                      |
| 3R-6                   | 35 abcde     | 1,38 abcd   | 140 abcdef  | 55 abcde   | EMGOPA301           | 44 abcde   | 1.25 abcd | 149 abodef   | 56 abcde                     |
| 3R-7                   | 42 abcde     | 0,99 abcd   | 133 abcdef  | 33 cde     | EMGOPA302           | 34 abcde   | 0,89 bcd  | 103 def      | 32 de                        |
| 3R-8                   | 34 abcde     | 0,94 abcd   | 111 cdef    | 40 abcde   | EMGOPA303           | 39 abcde   | 1,02 abcd | 115 bcdef    | 41 abcde                     |
| 3R-12                  | 39 abcde     | 0.87 bcd    | 110 cdef    | 43 abcde   | EMGOPA304           | 35 de      | 1.08 abcd | 121 bodef    | 44 abcde                     |
| 3R-13                  | 45 abcde     | 1.24 abcd   | 141 abcdef  | 57 abcde   | EMGOPA305           | 29 cde     | 1,08 abcd | 136 abodef   | 43 abcde                     |
| 3R-14                  | 59 abode     | 1,21 abcd   | 150 abcdef  | 52 abcde   | EMGOPA306           | 32 cde     | 1,23 abcd | 119 bcdef    | 50 abcde                     |
| 3R-15                  | 38 abcde     | 1,29 abcd   | 119 bodef   | 45 abcde   | EMGOPA307           | 56 abode   | 1,57 abc  | 171 abode    | 65 abcd                      |
|                        |              |             |             |            |                     |            |           |              |                              |
| 3R-16                  | 64 abcd      | 1,33 abcd   | 164 abcdef  | 57 abcde   | EMGOPA309           | 53 abcde   | 1,54 abc  | 157 abcdef   | 70 abod                      |
| 3R-23                  | 41 abcde     | 1.16 abcd   | 146 abcdef  | 44 abcde   | EMGOPA313           | 32 bode    | 1.04 abcd | 129 abcdef   | 50 abode                     |
| 3R-24                  | 45 abcde     | 1.18 abcd   | 152 abcdef  | 47 abode   | FT-I                | 36 abcde   | 1,04 abcd | 121 bcdef    | 40 abode                     |
| 3R-27                  | 42 abcde     | 0.98 abcd   | 123 bcdef   | 45 abcde   | FT-2                | 51 abcde   | 1,30 abcd | 160 abcdef   | 65 abcd                      |
| 3R-28                  | 44 abcde     | 1,17 abcd   | 125 abcdef  | 41 abcde   | FT-3                | 59 abcde   | 1.05 abcd | 129 abcdef   | 47 abcde                     |
| 3R-29                  | 55 abcde     | 1,46 abcd   | 161 abcdef  | 69 abcd    | FT-4                | 50 abcde   | 1,45 abcd | 160 abcdef   | 66 abcd                      |
| 3R-30                  | 41 abcde     | 1,21 abcd   | 140 abcdef  | 47 abcde   | FT-5                | 46 abcde   | 1.51 abc  | 144 abcdef   | 57 abcde                     |
| 3R-32                  | 29 cde       | 1,14 abcd   | 126 abcdef  | 46 abcde   | FT-6                | 57 abcde   | 1,39 abcd | 134 abcdef   | <ul> <li>59 abcde</li> </ul> |
| 3R-35                  | 39 abcde     | 1.14 abcd   | 135 abcdef  | 51 abcde   | FT-7                | 26 de      | 1,18 abcd | 113 cdef     | 44 abcde                     |
| 3R-36                  | 33 abcde     | 1.49 abc    | 135 abcdef  | 52 abcde   | FT-8                | 60 abcde   | 1.30 abcd | 143 abcdef   | 51 abcde                     |
| 3R-37                  | 56 abcde     | 1,43 abcd   | 191 abcd -  | . 58 abcde | FT-9                | 39 abcde   | 1,24 abcd | 137 abcdef   | 55 abcde                     |
| 3R-38                  | ' 36 abcde ' | 1,52 abc    | 131 abcdef  | 70 abcd    | FT-10               | 32 bcde    | 1,23 abcd | 130 abcdef   | 50 abcde                     |
| R/EMGOPA312            |              | 1.21 abcd   | 130 abcdef  | 47 abcde   | FT-11               | 43 abcde   | 1,41 abcd | 142 abcdef   | 54 abcde                     |
| Bragg / : ~!           |              | - 1,23 abcd | 133 abcdef  | 46 abcde   | FT-12               | 40 abcde   | 1,22 abcd | 153 abcdef   | 43 abcde                     |
| AC-I                   | 36 abcde     | 1,00 abcd   | 109 cdef    | 35 bode    | FT-14               | 47 abcde   | 1.34 abcd | 142 abodef   | 45 abcde                     |
| ampos Gerais           |              | 1,46 abcd   | 150 abcdef  | 59 abcde   | FT-16               | 35 abcde   | 0,99 abcd | 124 abcdef   | 44 abcde                     |
| CEPIO                  | 52 abcde     | . 1,30 abcd | 139 abcdef  | 62 abcde   | FT-17               | 70 a       | 1,76 a    | 219 a        | 74 ab                        |
| CEP12 - Cambara        | 60 abcde     | 1,29 abcd   | 150 abcdef  | 49 abcde   | FT-18               | 58 abcde   | 1,39 abcd | 159 abcdef   |                              |
| CEP20 - Guajuvira      | 41 abcde     | 0.92 abcd   | 116 bcdef   | 37 bcde    | FT-19               |            | 1,34 abcd |              | 62 abcde                     |
| Cobb                   | 26 de        | 0,98 abcd   |             | 41 abcde   | FT-20               |            | 1,34 abcd | 151 abcdef   | 58 abcde                     |
| Davis                  |              |             |             |            |                     |            |           | 127 abcdef   | 58 abcde                     |
|                        | 49 abcde     | 1.41 abcd   | 154 abcdef  | 56 abcde   | FT-Abyara           | 42 abcde   | 1.14 abcd | 127 abcdef   | 45 abcde                     |
| T-Bahia                | 41 abcde     | 1,25 abcd   | 135 abcdef  | 57 abcde   | MSBR-34             |            | 1,12 abcd | 143 abcdef   | 45 abcde                     |
| T-Canarana             | 22 e         | 0.63 d      | 72 f        | 25 e       | MSBR-39             | 40 abcde   | 1,36 abcd | 140 abcdef   | 52 abcde                     |
| T-Cometa               | 42 abcde     | 1,22 abcd   | 148 abcdef  | 49 abcde   | Nova IAC-7          | 39 abcde   | 0,80 cd   | 103 def      | 33 cde                       |
| T-Cristalina           | 38 abcde     | 1,16 abcd   | 122 bodef   | 42 abcde   | Numbaira            | 47 abcde   | 1.22 abcd | 132 abcdef   | 52 abcde                     |
| T-Estrela              | 41 abcde     | 1,25 abcd   | 141 abcdef  | 51 abcde   | OCEPAR2             | 66 abc     | 1.34 abcd | 152 abcdef   | 61 abcde                     |
| T-Eureka               | 59 abcde     | 1,48 abc    | 162 abcdef  | 59 abcde   | OCEPAR3             | 53 abcde   | 1,03 abcd | · 137 abcdef | 44 abcde                     |
| T-Guaira               | 46 abcde     | 1.42 abcd   | 140 abcdef  | 54 abcde   | OCEPAR4             | 66 abc     | 1.51 abc  | 162 abcdef   | 56 abcde                     |
| T-Jatobá               | 42 abcde     | 1,20 abcd   | 138 abcdef  | 49 abcde   | OCEPAR5             | 44 abcde   | 1,21 abcd | 135 abcdef   | 54 abcde                     |
| T-Manacá               | 45 abcde     | 0,86 bcd    | 121 bcdef   | 40 abcde   | OCEPAR6             | 57 abcde   | 1,38 abcd | 155 abcdef   | 63 abcd                      |
| T-Maracajú             | 54 abcde     | 1,40 abcd   | 133 abcdef  | 58 abcde   | OCEPAR7             | 50 abcde   | 1.61 abc  | 176 abcde    | 60 abcde                     |
| T-Seriema              | 36 abcde     | 0,96 abcd   | 111 cdef    | 42 abcde   | OCEPAR8             | 40 abcde   | 1,28 abcd | 139 abcdef   | 56 abcde                     |
| OBR-25                 | 60 abcde     | 1,35 abcd   | 142 abcdef  | 64 abcd    | OCEPAR9             | 34 abcde   | 1,37 abcd | 156 abcdef   | 51 abcde                     |
| AC-2                   | 40 abcde     | 1,06 abcd   | 134 abcdef  | 40 abcde   | OCEPAR10            |            | 1,19 abcd | 141 abcdef   | 50 abcde                     |
| AC-4                   | 53 abcde     | 1,53 abc    | 174 abcde   | 61 abcde   | OCEPARII            | 26 de      | 1.09 abcd | 116 bcdef    | 39 abcde                     |
| AC-5                   | 56 abcde     | 1,07 abcd   | 140 abcdef  | 47 abcde   | OCEPAR13            | 50 abode   | 1,11 abcd | 144 abcdef   | 53 abcd                      |
| AC-6                   | 39 abcde     | 1.25 abcd   | 157 abcdef  | 50 abode   | OCEPAR14            | 43 abode   | 1.14 abcd | 137 abcdef   | 49 abcde                     |
| AC-7                   | 52 abcde     | 1.52 abc    | 209 ab      | 61 abcde   | Pérola              | 34 abcde   |           |              |                              |
|                        |              | 1.17 abcd   |             |            |                     |            | 1,09 abcd | 118 bodef    | 44 abcdi                     |
| AC-8                   | 51 abcde     |             | 149 abcdef  | , 57 abcde | Paraná<br>Parana/ha |            | 1.42 abcd | 158 abodef   | 56 abcd                      |
| AC-9                   | 30 cde       | 0.92 bcd    | 114 bcdef   | 38 abcde   | Paranaiba           | 34 abcde   | 0.88 bcd  | 106 def      | 35 bcde                      |
| AC-II                  | 35 abcde     | 1,05 abcd   | 120 bcdef   | 34 cde     | Paranagoiana        |            | 1,37 abcd | 149 abcdef   | 54 abcde                     |
| AC-12                  | 40 abcde     | 1,32 abcd   | 147 abcdef  | 44 abcde   | Planalto            | . 36 abcde | 1,35 abcd | 135 abcdef   | 50 abcde                     |
|                        | 43 abcde     | 1,18 abcd   | 185 abcde   | 52 abcde   | RS 5-Esmeralda      | 44 abcde   | 1,00 abcd | 128 abcdef   | 39 abcde                     |
| AC-13 **<br>AC-15 **** | 50 abode     | 1,39 abcd   | 152 abcdef  |            | TAN DE LINE BOARD   |            | 1,00 0000 | ten mondet   |                              |

TABELA 3. Continuação.

| Cultivares   | NN       | MPAS       | MNS        | NTPA      | Cultivares | NN         | MPAS      | MNS          | NTPA        |
|--------------|----------|------------|------------|-----------|------------|------------|-----------|--------------|-------------|
| IAC-16       | 28 cde   | 0,83 bcd   | 95 ef      | 34 cde    | RS7        | 44 abcde   | 1,11 abcd | 132 abcdef   | 50 abcde    |
| IAC-100      | 38 abcde | 1,25 abcd  | 147 abcdef | 43 abcde  | Santa Rosa | 60 abcde   | 1,39 abcd | 145 abcdef   | 61 abcde    |
| IAC-Foscarin | 62 abcd  | 1.21 abcd  | 162 abcdef | 48 abcde  | Sertaneja  | 42 abcde   | 1.16 abcd | 122 bcdef    | 48 abcde    |
| IAC-PL-1     | 38 abcde | 1.32 abcd  | 163 abcdef | _56 abcde | SPBR-41    | . 48 abcde | 1,04 abcd | 125 abcdef . | 45 abcde    |
| IAS4         | 40 abcde | 1.06 abcd  | 125 abcdef | 50 abcde  | Stuart     | 62 abcd    | 1.49 abc  | 185 abcde    | . 69 abcd ; |
| IAS5         | 44 abcde | 1.10 abcd  | 131 abcdef | 52 abcde  | Tiaraiu    | 46 abcde   | 1,29 abcd | 147 abcdef   | 53 abcde ~  |
| Invicta      |          | 0.99 abcd  | 117 bcdef  | 42 abcde  | Timbira    | 35 abcde   | 1,15 abcd | 137 abcdef   | 48 abcde    |
| IPAGRO 20    | 56 abcde | 1.24 abcd  | 160 abcdef | 56 abcde  | Tropical   | 50 abcde   | 1,47 abcd | 165 abcdef   | 63 abcde    |
| IPAGRO 21    | 63 abcd  | 1,00 abcd. | 144 abcdef | 43 abcde  | UFV-I      | 34 abcde   | 1,27 abcd | 127 abcdef   | 53 abcde    |
| Ivai         | 50 abcde | 1.41 abcd  | 150 abcdef | 56 abcde  | UFV-5      | 44 abcde   | 1.15 abcd | 121 bcdef    | 50 abcde    |
| J-200        | 45 abcde | 1.66 ab    | 177 abcde  | 71 abc    | UFV-8      | 52 abcde   | 1.30 abcd | 158 abodef   | 58 abcde    |
| Lancer       | 53 abcde | 1.46 abcd  | 190 abcde  | 51 abcde  | UFV-9      | 54 abcde   | 1,18 abcd | 134 abcdef   | 45 abcde    |
| MGBR-22      | 52 abcde | 1.28 abcd  | 155 abcdef | 51 abcde  | UFV-10     | 38 abcde   | 1.33 abcd | 155 abcdef   | 53 abcde    |
| MSBR-17      | 40 abcde | 0.99 abcd  | 112 cdef   | 40 abcde  | UFV/ITM-1  | 52 abcde   | 1.23 abcd | 177 abcde    | 51 abcde    |
| MSBR-18      | 51 abcde | 1.51 abc   | 176 abcde  | 64 abcd   | União      | 42 abcde   | 1.10 abcd | 132 abcdef   | 49 abcde    |
| MSBR-19      | 40 abcde | 1,14 abcd  | 147 abcdef | 44 abcde  | Vicoja     | 42 abcde   | 1,34 abcd | 140 abcdef   | 54 abcde    |
| MSBR-20      | 30 cde   | 1,33 abcd  | 134 abcdef | 52 abcde  | Média      | 44         | 1,22      | 140          | 51          |
| MSBR-21      | 36 abcde | 1,11 abcd  | 131 abcdef | 40 abcde  | C.V.(%)    | 23         | 18        | 18           | 20          |

¹ Médias seguidas pela mesma letra, não diferiram estatisticamente pelo teste de Tukey (P ≤ 0,05).

com a estirpe SEMIA 587, destacou-se a FT-Abyara, com 64 nód./pl, e baixas nodulações foram constatadas com as cultivares IAC-6 (21 nód./pl.) e IAC-100 (20 nód./pl.) (Tabela 4).

Consequentemente, embora tenham sido detectadas diferenças na nodulação da ordem de quatro vezes, todas as cultivares foram capazes de apresentar, no mínimo, 20 nód./pl. com qualquer uma das três estirpes (Tabelas 2, 3 e 4). Os perfis de distribuição desses nódulos na raiz mostraram que a nodulação esteve, quase sempre, restrita à região da coroa da raiz, que compreende, aproximadamente, 3,5 cm de comprimento e 2,5 cm de largura. Um pequeno deslocamento da nodulação para as raízes secundárias ocorreu somente pela inoculação da SEMIA 587 (Fig. 1). Algumas cultivares apresentaram um deslocamento maior para as raízes laterais com todas as estirpes, como, por exemplo, a cultivar FT-Abyara e BR-27 mostrando, portanto, potencial para utilização em programas de melhoramento.

A média geral do NTPA com as três estirpes foi de 50,24 mg N/pl. Trinta e sete cultivares acumularam teores de N superiores a 55,26 mg N/pl. Dessas, 17 cultivares apresentaram teores superiores a 60,28 mg N/pl.: Andrews, Bossier, BR-29, Davis, FT-Guaíra, FT-6, FT-9, FT-17, FT-20, Ivaí, J-200, MGBR-22, MSBR-18, Numbaíra, OCEPAR 4, Santa

Rosa e Stuart, das quais 15 acumularam teores de NTPA superiores à média com as três estirpes. As exceções foram apenas a cultivar Andrews, que apresentou resultado inferior à média quando infectada pela estirpe SEMIA 566, e a cultivar FT-17, que foi inferior quando infectada pela SEMIA 5019. As cultivares Bossier (73,32 mg N/pl.), BR-29 (67,25 mg N/pl.), J-200 (73,42 mg N/pl.), e Ivaí (67,38 mg N/pl.) acumularam 30% a mais de NTPA do que a média geral. A cultivar Stuart esteve próxima desse grupo, apresentando 65,26 mg N/pl.

Em relação às plantas com desempenho simbiótico inferior, 37 cultivares acumularam 10% a menos de NTPA do que a média geral com todas as estirpes, ou seja, um acúmulo inferior a 45,21 mg N/pl., e 18 dessas cultivares acumularam 20% a menos, 40,19 mg N/pl. Finalmente, cinco cultivares acumularam valores inferiores a 35,16 mg N/pl., correspondentes a 30% menos do que a média geral do experimento. As cinco cultivares que apresentaram pior desempenho foram a BR-7 (34,49 mg N/pl.), EMBRAPA 9 (30,75 mg N/pl.), EMGOPA--313 (34,60 mg N/pl.), FT-Canarana (29,24 mg N/pl.) e Paranagoiana (32,75 mg N/pl.). Dessas, a BR-7 apresentou um desempenho superior ao da média geral com a SEMIA 587 e a EMGOPA-313 e a Paranagoiana apresentaram bom desempenho com a SEMIA 566.

TABELA 4. Efeito da inoculação de 152 cultivares de soja com a estirpe de B. elkanii SEMIA 587. Os parâmetros analisados foram: número de nódulos (NN, nód./pl.), massa da parte aérea seca (MPAS, g/pl.), massa de nódulos secos (MNS, mg/pl.) e nitrogênio total da parte aérea (NTPA, mg N/pl.). Experimento conduzido sob condições axênicas de casa de vegetação. Média de três repetições. As plantas foram coletadas cinco semanas após o plantio¹.

| Cultivares              | NN                 | MPAS                     | MNS                  | NTPA         | Cultivares             | NN                 | MPAS                     | MN\$                 | NTPA         |
|-------------------------|--------------------|--------------------------|----------------------|--------------|------------------------|--------------------|--------------------------|----------------------|--------------|
| Andrews                 | 40 abcd            | 1.67 abc                 | 224 ab               | 71 a         | Doko                   | 34 abcd            | 1,18 abcde               | 144 abcd             | 59 a         |
| BA BR-31                | 47 abcd            | 1,30 abcde               | 150 abcd             | 52 a ்       | Dourados               | 32 abcd            | 0.95 abcde               | 141 abcd             | . 43 a ˈ     |
| Bossier                 | 45 abcd            | 1,67 abc                 | 230 a                | 74 a         | EMBRAPA 1              | 36 abcd            | 1.16 abcde               | 157 abcd             | 42 a         |
| BR-1                    | 35 abcd            | 1.02 abcde               | 156 abcd             | 49 a -       |                        | 23 cd              | 0.99 abcde               | 132 abcd             | 37 a         |
| BR-2                    | 33 abcd            | 1,08 abcde               | 142 abcd             | 57 a         | EMBRAPA 3              | 31 abcd            | 0,75 bcde                | 105 abcd             | 30 a         |
| BR-3                    | 48 abcd            | 0.92 abcde               | 112 abcd             | 32 a         | EMBRAPA 4              | 29 bcd             | 1.13 abcde               | 147 abcd             | 41 a         |
| BR-4<br>BR-5            | 32 abcd            | 1.15 abcde               | 132 abcd             | 43 a         | Transfer 16 2          | 28 bcd             | 1,64 abcde               | 210 abcd             | 67 a         |
| BR-6                    | 32 abcd<br>33 abcd | 1.17 abcde<br>1.23 abcde | 146 abcd<br>180 abcd | 46 a         | EMBRAPA 9              | 31 abcd            | 0.77 abcde               | 141 abcd             | 41 a         |
| BR-7                    | 36 abcd            | 1,20 abcde               | 175 abcd             | 54 a<br>51 a | EMGOPA301<br>EMGOPA302 | 35 abcd            | 0.76 bcde                | 117 abcd             | 36 a         |
| BR-8                    | 32 abcd            | 1.07 abcde               | 160 abcd             | 51 .         | EMGOPA303              | 38 abcd<br>36 abcd | 1.24 abcde<br>0.80 abcde | 148 abcd             | 49 a         |
| BR-12                   | 22 cd              | . 0.87 abcde             | _ 119 abcd           | 44 a         | EMGOPA304              | 43 abcd            | 0.92 abcde               | 140 abcd<br>129 abcd | 38 a         |
| BR-13                   | 36 abcd            | 1.67 abcd                | 217 abc              | 67 a         | EMGOPA305              | 26 bcd             | 1.09 abcde               | 152 abcd             | 36 a<br>44 a |
| BR-14                   | 42 abcd            | 1.26 abcde               | 184 abcd             | 51 a         | EMGOPA306              | 42 abcd            | 1.29 abcde               | 141 abcd             | 41 2         |
| BR-15                   | 45 abcd            | 1,31 abcde               | 157 abcd             | 47 a         | EMGOPA307              | 27 bcd             | 1.11 abcde               | 123 abcd             | 35 a         |
| BR-16                   | 26 bcd             | 0.85 abcde               | 96 cd                | 40 a         | EMGOPA309              | 42 abcd            | 1,15 abcde               | 134 abcd             | 30 a         |
| BR-23                   | 33 abcd            | 1,22 abcde               | 178 abcd             | 55 a         | EMGOPA313              | 26 bcd             | 0.71 cde                 | 102 bcd              | 29 a         |
| BR-24                   | 33 abcd            | 1,43 abcde               | 176 abcd             | 62 a         | FT-1                   | 33 abcd            | 1,40 abcde               | 185 abcd             | 58 a         |
| BR-27                   | 32 abcd            | 1,37 abcde               | 191 abcd             | 61 a         | FT-2                   | 44 abcd            | 1,16 abcde               | 171 abcd             | 57 a         |
| BR-28                   | 37 abcd 📑          | 1.18 abcde               | 176 abcd             | 57 a         | FT-3                   | 29 bcd             | 0,97 abcde               | 124 abcd             | 48 a         |
| BR-29                   | 34 abcd            | 1.79 ab                  | 171 abcd             | 66 a         | FT-4                   | 31 abcd            | 1.18 abcde               | 149 abcd             | 51 a         |
| BR-30                   | 52 abcd            | 1.19 abcde               | 140 abcd             | 48 a         | FT-5                   | 36 abcd            | 1,01 abcde               | 139 abcd             | 38 a         |
| BR-32                   | 29 bcd             | 0.88 abcde               | 126 abcd             | 47 m         | FT-6                   | 38 abcd            | 1.25 abcde               | 179 abcd             | 60 a         |
| BR-35                   | 35 abcd _          | 1.33 abcde               | 184 abcd             | 59 a         | FT-7                   | 44 abcd            | 1.41 abcde               | 147 abcd             | 52 a         |
| BR-36                   | 25 cd              | 1,38 abcde               | 175 abcd             | 56 a         | FT-8                   | 55 abc             | . 0.91 abcde             | 119 abcd             | 26 a         |
| BR-37 ::                | 36 abcd            | 0,90 abcde               | 130 abcd             | ~ 46 a ~     | FT-9                   | 140 abcd 111       | 1,50 abcde               | 180 abcd             | 73 a         |
| BR-38                   | 34 abcd            | 1,46 abcde               | 164 abcd             | 63 a         | FT-10                  | 7 30 bcd           | 1.37 abcde               | 177 abcd             | 58 a         |
| BR/EMGOPA312            | 28 bcd             | 1.01 abcde               | 135 abcd             | 48 s         | FT-11                  | 39 abcd            | 1,47 abcde               | 176 abcd             | 64 a         |
| Bragg                   | 42 abcd            | 1.38 abcde               | 218 abc              | 56 a '       | FT-12                  | 45 abcd            | 1.39 abcde               | 188 abcd             | 57 a         |
| CAC-1                   | 43 abcd            | 1.25 abcde               | 184 abcd             | 58 a         | FT-14                  | 36 abcd            | 1.10 abcde               | 142 abcd             | . 51 a       |
| Campos Gerais<br>CEP 10 | 41 abcd 27 bcd     | 1,34 abcde               | 179 abcd             | 56 a         | FT-16                  | 39 abcd            | 1.19 abcde               | 188 abcd             | · 57 a       |
| CEP12 - Cambará         | 34 abcd            | . 1,35 abcde .           | 146 abcd .           | . 53 a       | FT-17                  | 32 abcd            | 1.45 abcde               | 193 abcd             | 70 a         |
| CEP20 - Guajuvira       | 34 abcd            | 1,21 abcde               | 163 abcd             | 51 a         | FT-18                  | 36 abcd            | 0.87 abcde               | 112 abcd             | - 33 a       |
| Cobb                    | 29 bcd             | 1,13 abcde               | 123 abcd             | 46 a         | FT-19                  | 40 abcd            | 1.18 abcde               | 162 abcd             | 52 a         |
| Davis                   | 40 abcd            | 1,20 abode               | 111 abcd<br>171 abcd | 53 a<br>60 a | FT-20                  | 43 abcd            | 1.19 abcde               | 184 abcd             | 56 a         |
| FT-Bahia                | 28 bcd             | 1,04 abcde               | 108 abcd             | 36 a         | FT-Abyara<br>MS BR-34  | 64 a               | 1,50 abcde               | 178 abcd             | 56 a         |
| FT-Canarana             | 33 abcd            | 0,90 abcde               | 136 abcd             | 39 a         | MS BR-39               | 36 abcd            | 0.81 abcde               | 117 abcd             | 30 a         |
| FT-Cometa               | 38 abcd            | 0,96 abcde               | 137 abcd             | 45 a         | Nova IAC-7             | 36 abcd            | 1.44 abcde               | 168 abcd             | 63 a         |
| FT-Cristalina           | 33 abcd            | 1.30 abcde               | 194 abcd             | 59 a         | Numbaira               | 40 abcd<br>43 abcd | 0.90 abcde               | 123 abcd             | 39 a         |
| FT-Estrela              | 38 abcd            | 1,10 abcde               | 130 abcd             | 45 a         | OCEPAR 2               | 46 abcd            | 1,47 abcde<br>1,47 abcde | 146 abcd             | 72 a         |
| FT-Eureka               | 33 abcd            | 1.48 abcde               | 183 abcd             | 58 a         | OCEPAR 3               | 33 abcd            | 0,61 de                  | 208 abcd<br>114 abcd | 68 a         |
| FT-Guaira               | 38 abcd .          | 1.66 abcd                | 188 abcd             | 69 a         | OCEPAR 4               | 59 ab              | 1.49 abcde               | 202 abod             | 26 a<br>69 a |
| FT-Jatoba               | 33 abcd            | 1,43 abcde               | 170 abcd             | 60 a         | OCEPAR 5               | 24 cd              | 1,40 abcde               | 167 abod             | 56 a         |
| FT-Manaca               | 32 abcd            | 1,41 abcde               | 207 abcd             | 66 a         | OCEPAR 6               | 34 abcd            | _0.94 abcde              | 107 abcd             | 33 a         |
| FT-Maracajú             | . 36 abcd          | 1,33 abcde               | 143 abcd             | 62 a         | OCEPAR 7               | 40 abcd            | 1.38 abcde               | 192 abcd             | 63 a         |
| FT-Seriema              | 30 bcd             | 0,59 e                   | 91 d                 | 22 a         | OCEPAR 8               | 38 abcd            | 1.20 abcde               | 156 abcd             | 51 a         |
| GO BR-25                | 34 abcd            | 0.89 abcde               | 111 abcd             | 38 a         | OCEPAR 9               | 25 cd              | 0.93 abcde               | 118 abcd             | 41 a         |
| AC-2                    | 35 abcd            | l abcde                  | 153 abcd             | 42 a         | OCEPAR 10              | 31 abcd            | 1.07 abcde               | 143 abcd             | 52 g         |
| AC-4                    | 38 abcd            | 0,97 abcde               | 171 abcd .           | 43 a         | OCEPAR 11              | 24 cd              | 1,16 abcde               | 144 abcd             | 50 a         |
| IAC-5                   | 32 abcd            | 1.04 abcde               | 154 abcd             | 48 a         | OCEPAR 13              | 35 abcd            | 1.29 abcde               | 166 abcd             | 53 a         |
| AC-6                    | 21 d               | 0.68 cde                 | 108 abcd             | 29 a         | OCEPAR14               | 37 abcd :          | 0,92 abcde               | 138 abcd             | 40 a         |
| AC-7                    | 34 abcd            | 0.81 abcde               | 119 abcd             | 38 a         | Pérola                 | 24 cd              | 0.73 cde                 | 99 bcd               | 35 a         |
| IAC-8                   | 42 abcd            | 1,27 abcde               | 162 abcd             | 50 a         | Paraná                 | 42 abcd            | 1.50 abcde               | 201 abcd             | 66 a         |
| AC-9                    | 35 abcd            | 1.06 abcde               | 136 abcd             | 51 a         | Paranaiba              | 27 bcd             | 1.33 abcde               | 150 abcd             | 48 a         |
| IAC-11                  | 29 bcd             | 0.93 abcde               | 140 abcd             | 42 a         | Paranagoiana           | 32 abcd            | 0,81 abcde               | 108 abcd             | 34 a         |
| IAC-12<br>IAC-13        | 24 cd              | 1.09 abcde               | 151 abcd             | 50 a         | Planalto               | 35 abcd            | 1.02 abcde               | 130 abcd             | 50 a         |
|                         | 30 bcd             | 1.19 abcde               | 142 abcd             | 49 a         | RS 5-Esmeralda         | 36 abcd            | 1,03 abcde               | 129 abcd             | 37 z         |
| IAC-15                  | 30 bcd             | 1,14 abcde               | 162 abcd             | 49 a         | RS 6-Guassupi          | 35 abcd            | 1,83 a                   | 199 abcd             | 68 a         |

TABELA 4. Continuação.

| Cultivares   | NN      | MPAS       | MNS      | NTPA | Cultivares | NN        | MPAS       | MNS        | NTPA   |
|--------------|---------|------------|----------|------|------------|-----------|------------|------------|--------|
| IAC-16       | 24 cd   | 1,43 abcde | 173 abcd | 63 a | RS 7       | 32 abcd   | 1,16 abcde | 149 abcd   | 53 a   |
| IAC-100      | 20 d    | 0.82 abcd  | 104 bcd  | 32 a | Santa Rosa | 33 abcd   | 1,16 abcde | 151 abcd   | 55 a   |
| IAC-Foscarin | 30 bcd  | 0,92 abcde | 121 abcd | 38 a | Sertaneja  | 32 abcd   | 1,53 abcde | 197 abcd   | 69 🛊   |
| IAC-PL-1     | 26 bcd  | 1.06 abcde | 159 abcd | 47 a | SP BR-41   | 38 abcd   | 1,47 abcde | 160 abcd   | 56 a   |
| IAS 4        | 30 bcd  | 1.50 abode | 176 abcd | 62 a | Stuart     | 33 abcd - | 1,32 abode | 154 abcd   | 54 a   |
| IAS 5        | 25 cd   |            | 106 abcd | 39 a | Tiaraju -  | 38 abcd   | 1,04 abcde | 136 abcd   | 48 a   |
| Invicta      | 49 abcd | 1.40 abcde | 192 abcd | 66 a | Timbira    | 38 abcd   | 1,68 abc   | 184 abcd _ | 67 a   |
|              | 40 abcd | 1,13 abcde | 156 abcd | 52 a | Tropical   | 45 abcd   | 1.29 abcde | 175 abcd   | 48 a   |
| IPAGRO 20    | 48 abod | 1,65 abcde | 201 abcd | 65 a | UFV-I      | 26 bcd    | 1,31 abcde | 178 abcd   | 58 a   |
| IPAGRO 21    | 42 abcd | 1,59 abcde | 212 abcd | 66 a | UFV-5      | 24 cd     | 0.93 abcde | 158 abcd   | 45 a   |
|              | 50 abcd | 1,47 abode | 222 ab   | 67   | UFV-8      | 44 abcd   | 1,23 abcde | 163 abcd   | 43 a   |
| 1-200        | 36 abcd | 1.46 abcde | 199 abod | 67 a | UFV-9      | 42 abcd   | 1.26 abcde | 195 abcd   | 64 a   |
| Lancer       | 42 abcd | 1.43 abode | 181 abcd | 64 a | UFV-10     | 27 bcd    | 1,08 abcde | 137 abcd   | 47 a   |
| MGBR-22      |         | 1,43 abcde | 201 abcd | 68 a | UFV/ITM-L  | 38 abcd   | 1.21 abcde | 171 abcd   | 56 a   |
| MS BR-17     | 54 abc  | 1,26 abcde | 160 abod | 55 a | União      | 40 abcd   | 1,18 abcde | 168 abcd   | 54 a   |
| MS BR-18     | 34 abcd |            | 143 abcd | 45 a | Vicoja     | 30 bcd    |            | 179 abcd   | 49 a   |
| MS BR-19     | 25 cd   | 0,93 abcde | 143 abcu |      |            |           |            |            |        |
| MS BR-20     | 34 abcd | 1,31 abcde | 147 abcd | 49 a | Média      | 35        | 1,18       | 156        | .51 ., |
| MSBR-21      | 33 abcd | 1.12 abode | 155 abcd | 46 a | C.V.(%)    | 25        | 24         | 21         | 27     |

<sup>&</sup>lt;sup>1</sup> Médias seguidas pela mesma letra não diferiram estatisticamente pelo teste de Tukey (P≤ 0.05).

TABELA 5. Quadro de análise de variância e coeficiente de variação para as variáveis de número de nódulos (NN), massa de parte aérea (MPAS) e dos nódulos (MNS) secos e N total acumulado na parte aérea (NTPA).

| Fonte de variação                                             | GL                          | NN                                                                              | MPAS M                                                     |                                | MN                                                            | S                              | . NI                                                       | TPA                            |
|---------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------|---------------------------------------------------------------|--------------------------------|------------------------------------------------------------|--------------------------------|
|                                                               | 1.15                        | QM F                                                                            | QM                                                         | F                              | QM                                                            | . F                            | - QM                                                       | F                              |
| Bloco<br>Estirpe<br>Cultivar<br>Cultivar x estirpe<br>Residuo | 2<br>2<br>152<br>303<br>114 | 15.260,109 26,02<br>83.596,575 142,52<br>1.897,69 3,24<br>716,91 1,22<br>586,55 | 33,626083<br>22,334093<br>1,376042<br>0,714019<br>0,476789 | 70,53<br>46,84<br>2,89<br>1,50 | 0,0502558<br>2,7927307<br>0,0260975<br>0,0137240<br>0,0076107 | 6.60<br>366.94<br>3.43<br>1.80 | 223.881,84<br>4.534,80<br>2.624,01<br>1.456,97<br>1.005,64 | 222,62<br>4,51<br>2,61<br>1,45 |
| C.V. (%)                                                      |                             | 28,44                                                                           | 27,39                                                      |                                | 25,64                                                         | :. <b>:</b>                    | 31,69                                                      | N. 18 - 118 - 128              |

Os parâmetros de NN, MNS, MPAS e NTPA foram analisados estatisticamente para a obtenção das matrizes de correlação. As correlações entre o NN e o NTPA, embora significativas a 1% devido ao grande número de pontos da correlação, foram baixas, r =0,34, r=0,58 e r=0,31, respectivamente com as estirpes SEMIA 5019, SEMIA 566 e SEMIA 587. Valores de r mais elevados foram obtidos entre a MNS e o NTPA, r=0,80 (SEMIA 5019), r=0,74 (SEMIA 566) e r=0,86 (SEMIA 587), também significativas a 1%. As correlações mais elevadas e significativas a 1% foram verificadas entre os parâmetros MPAS e NTPA, com todas as estirpes: SEMIA 5019 (0,94), SEMIA 566 (0,87) e SEMIA 587 (0,88).

A importância do genótipo da soja para o bom desempenho do processo da fixação biológica do N<sub>2</sub> já havia sido ressaltada desde os primeiros ensaios conduzidos no Brasil (Döbereiner & Arruda, 1967), mas, nos últimos anos, apenas alguns poucos estudos, como o conduzido por Galli (1987), investigaram o desempenho de novas cultivares quanto à capacidade simbiótica. Na ausência de uma avaliação contínua das características relacionadas à fixação do N<sub>2</sub> nos programas de melhoramento, podem ocorrer perdas genéticas em relação à capacidade simbiótica. Neste trabalho ficou evidenciado que, nos últimos anos, o programa de melhoramento da soja no Brasil não tem, muitas vezes, considerado a capacidade da soja de fixar N<sub>2</sub>. Comosiderado a capacidade da soja de fixar N<sub>2</sub>. Como

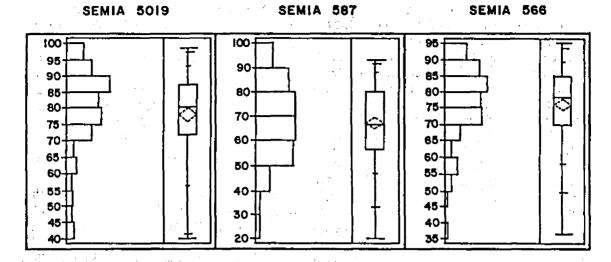



FIG. 1. Histograma relativo à porcentagem de nódulos na coroa das raízes de 152 cultivares de soja, infectadas com as estirpes de B. elkanii SEMIA 5019, SEMIA 587 e SEMIA 566. Ao lado direito de cada histograma está a representação estatística gráfica, onde os eixos verticais representam os valores mínimos e máximos nas extremidades e 10% e 90% nas proximidades do retângulo. As extremidades do retângulo indicam 25% e 75% dos valores. A linha imaginária que corta o losango ao meio indica o valor médio, e as suas extremidades, o intervalo de confiança dessa média a 95%. Médias de três repetições. As plantas foram coletadas cinco semanas após o plantio.

exemplo, pode-se citar as cultivares Bossier e Davis com melhor desempenho do que as cultivares BR-16, BR-23, BR-24, FT-7, FT-9, IAC-11, MG BR-22, MS BR-21, Numbaíra, OCEPAR 2, OCEPAR 6, OCEPAR 11, OCEPAR 14 e Paranaíba, que resultaram de cruzamentos com aquelas cultivares.

Foram constatadas grandes diferenças entre as cultivares, em número e massa nodular, mas nenhum dos genótipos foi capaz de restringir a nodulação com nenhum dos três sorogrupos estabelecidos nos solos brasileiros. Essa informação auxiliaria a introdução de novas estirpes promissoras (como a CPAC 7) em áreas com populações elevadas, como é o caso da Região Sul com a SEMIA 587 (Freire, 1977), e da Região do Cerrado com a SEMIA 566 (Vargas et al., 1993). A restrição à nodulação com as estirpes estabelecidas nos solos brasileiros, portanto, deve continuar a ser procurada na coleção de germoplasma da soja.

De um modo geral, houve uma concentração maior de nódulos na coroa da raiz, com um peque-

no deslocamento para as raízes laterais pela inoculação com a SEMIA 587. A nodulação na coroa da raiz é essencial para o bom desenvolvimento da soja, visto que esses nódulos garantem o suprimento adequado de N para a planta desde o estádio inicial de seu desenvolvimento, mas a importância da nodulação nas raízes laterais, em relação à nodulação na coroa, ainda não está estabelecida. No feijoeiro, a nodulação nas raízes laterais pode incrementar o período ativo de fixação, resultando em maior acúmulo de N nos tecidos (Wolyn et al., 1989; Hardarson et al., 1993). Mas, a nodulação é um processo auto-regulado pela planta e a formação de nódulos na raiz primária inibe a nodulação posterior (Pierce & Bauer, 1983). Desse modo, uma grande concentração de nódulos na coroa pode inibir a nodulação nas raízes secundárias. Torna-se importante, portanto, investigar os beneficios que a nodulação secundária pode trazer à nutrição nitrogenada da soja. A herdabilidade da nodulação em raízes secundárias de soja também poderá ser estudada, pela utilização daqueles genótipos que

apresentaram essa característica com todas as estirpes como, por exemplo, a FT-Abyara e a BR-27.

As informações obtidas neste trabalho podem ser úteis em programas de melhoramento, pela identificação de parentais com maior capacidade de nodulação e fixação do N2. Exemplos de incremento nas taxas de FBN utilizando essa estratégia já foram citados em diversas espécies, como o trevo (Trifolium spp.) (Mytton & SkØt, 1993), e o feijão (Phaseolus vulgaris) (Buttery et al., 1992). No caso da soja, há relatos de seleção considerando o N das sementes proveniente da FBN (Ronis et al., 1985) e a possibilidade de seleção em gerações precoces (F2) pelo número e massa nodular e pela redução do acetileno (Burias & Planchon, 1990). Alguns valores de herdabilidade citados em programas para a soja incluem o teor de N das sementes (0,28-0,37) e o N acumulado nas sementes proveniente da fixação (0,53-0,60) (Ronis et al., 1985). Foi citado ainda que pode haver seleção e melhoramento para aumento da massa nodular da soja com a população de rizóbio já estabelecida no solo (Greder et al., 1986). A resistência a doenças é outro fator relevante que deve ser considerado nos programas de melhoramento.

O número de nódulos não apresentou uma boa correlação com o N total acumulado na parte aérea (NTPA), também relatado em outros trabalhos (Nutman, 1981; Neves et al., 1985). Já a massa nodular apresentou melhor correlação com o NTPA, confirmando observações realizadas em estudos pioneiros conduzidos no Brasil (Döbereiner, 1966). Correlações elevadas e altamente significativas foram constatadas entre a MPAS e o NTPA das cultivares com as três estirpes analisadas. Deste modo, os resultados deste trabalho confirmam os obtidos por Haydock et al. (1980), de que, nos ensaios preliminares para seleção de linhagens promissoras para a FBN, sob condições axênicas e na ausência de N mineral, o parâmetro N acumulado nos tecidos apresenta correlação com a massa acumulada pelas plantas.

### CONCLUSÕES

1. As 152 cultivares de soja, infectadas pelas estirpes SEMIA 566, SEMIA 5019 e SEMIA 587 não mostram restrição à nodulação por essas estirpes.

- Verificam-se diferenças marcantes entre as cultivares quanto ao potencial de nodulação e fixacão do N<sub>2</sub>.
- 3. A determinação do parâmetro de massa da parte aérea seca é suficiente para a seleção das simbioses mais promissoras com a soja, em casa de vegetação e na ausência de N mineral, não sendo necessário avaliar o N total dos tecidos.

#### **AGRADECIMENTOS**

Ao Dr. Leones Almeida (CNPSo), pela colaboração em todas as etapas deste trabalho, ao Dr. Milton A. T. Vargas (CPAC), pelas sugestões dadas, e aos pesquisadores Maria Cristina Neves de Oliveira e José Erivaldo Pereira, pelo auxílio nas análises estatísticas; aos funcionários do Laboratório de Microbiologia do Solo, Lígia Maria de O. Chueire e Rinaldo B. Conceição, pelo auxílio técnico imprescindível na condução dos experimentos; ao CNPq (520017/94-3), pelo financiamento parcial do projeto.

## REFERÊNCIAS

- ANDRADE, D.S.; HAMAKAWA, R.J. Estimativa do número de células viáveis de rizóbio no solo e em inoculantes por infecção em plantas. In: HUNGRIA, M.; ARAUJO, R.S. (Eds.). Manual de métodos empregados em estudos de microbiologia agrícola. Brasília: Embrapa-SPI, 1994. p.63-94.
- BROSE, E.; FREIRE, J.R.J.; MÜLLER, L. Relações entre genótipos de soja (Glycine max [L.] Merrill), fixação simbiótica do nitrogênio e rendimento de grãos. Agronomia Sulriograndense, Santa Maria, v.15, p.179-198, 1979.
- BURIAS, N.; PLANCHON, C. Increasing soybean productivity through selection for nitrogen fixation. Agronomy Journal, Madison, v.82, p.1031-1034, 1990.
- BUTTERY, B.R.; PARK, S.J.; HUME, D.J. Potential for increasing nitrogen fixation in grain legumes. Canadian Journal of Plant Sciences, Ottawa, v.72, p.323-349, 1992.
- CALDWELL, B.E. Inheritance of a strain-specific ineffective nodulation in soybean. Crop Science, Madison, v.6, p.427-428, 1966.

- DEVINE, T.E. Genetic studies of soybean host cultivar interactions with *Rhizobium* strains. Soybean Genetic Newsletter, Ames, v.3, p.19-20, 1976.
- DEVINE, T.E.; KUYKENDALL, L.D.; O'NEILL, J.J. The Rj4 allele in soybean represses nodulation by chlorosis-inducing bradyrhizobia classified as DNA homology group II by antibiotic resistance profiles. Theoretical and Applied Genetics, New York, v.80, p.33-37, 1990.
- DÖBEREINER, J. Evaluation of nitrogen fixation in legumes by the regression of total plant nitrogen with nodule weight. Nature, London, v.210, p.850-852, 1966.
- DÖBEREINER, J.; ARRUDA, N.B. Interrelações entre variedades e nutrição na nodulação e simbiose da soja. Pesquisa Agropecuária Brasileira, Brasilia, v.2, p.475-487, 1967.
- DUNIGAN, E.P.; BOLLICH, P.K.; HUTCHINSON, R.L.; HICKS, P.M.; ZAUNBRECHER, F.C.; SCOTT, S.G.; MOWERS, R.P. Introduction and survival of an inoculant strain of *Rhizobium japonicum* in soil. Agronomy Journal, Madison, v.76, p.463-466, 1984.
- D'UTRA, G. Nova cultura experimental da soja. Boletim do Instituto Agronômico de Campinas, Campinas, v.10, n.9, p.582-587, 1899.
- FAO (Roma, Itália). Quarterly Bulletion of Statistics, Rome, v.6, p.66, 1993.
- FEIJE, F.; ANGER, V. Spot tests in inorganic analyses.
  Analytical Chemistry Acta, Netherlands, v.149, p.363-367, 1972.
- FREIRE, J.R. Inoculation of soybeans. In: VINCENT, J.M.; WHITNEY, A.S.; BOSE, J. (Eds.). Exploiting the legume-Rhizobium symbiosis in tropical agriculture. Mauii: Niftal, 1977. p.335-379. (College of Tropical Agriculture Miscellaneous Publication, 145).
- GALLI, L.V. Avaliação de genótipos de soja (Glycine max (L.) Merrill) e estirpes de Bradyrhizobium japonicum para a eficiência simbiótica. Piracicaba: USP-ESALQ, 1987. 137p. Dissertação de Mestrado.
- GREDER, R.R.; ORF, J.H.; LAMBERT, J.W. Heritabilities and associations of nodule mass and recovery of *Bradyrhizobium japonicum* serogroup USDA 110 in soybean. Crop Science, Madison, v.26, p.33-37, 1986.

- HARDARSON, G.; BLISS, F.A.; GIGALES-RIVERO, M.R.; HENSON, R.A.; KIPE-NOLT, J.A.; LONGERI, L.; MANRIQUE, A.; PEÑA--CABRIALES, J.J.; PEREIRA, P.A.A.; SANABRIA, C.A.; TSAI, S.M. Genotypic variation in biological nitrogen fixation by common bean. Plant and Soil, Dordrecht, v.159, p.59-70, 1993.
- HARDY, R.W.F.; HAVELKA, U.D. Photosynthate as a major factor limiting nitrogen fixation by field grown legumes with emphasis on soybeans. In: NUTMAN, P.S. (Ed.). Symbiotic nitrogen fixation in plants. Cambridge: Cambridge Univ. Press, 1976. p.421-439.
- HAYDOCK, K.P.; NORRIS, D.O.; TMANNETJE, L. The relation betwen nitrogen percent and dry weight of inoculated legumes *Rhizobium* effectiveness. Plant and Soil, Dordrecht, v.57, p.353-362, 1980.
- HUNGRIA, M.; VARGAS, M.A.T.; SUHET, A.R.; PERES, J.R.R. Fixação biológica do nitrogênio na soja. In: ARAUJO, R.S.; HUNGRIA, M. (Eds.). Microrganismos de importância agrícola. Brasilia: Embrapa-SPI, 1994. p.9-89.
- KNIGHT, P.T. Brazilian agricultural technology and trade: a study of five commodities. New York: Praeger Publishers Inc., 1971. 224p.
- KUYKENDALL, L.D.; SAXENA, B.; DEVINE, T.E.; UDELL, S.E. Genetic diversity in *Bradyrhizobium japonicum* Jordan 1982 and a proposal for *Bradyrhizobium elkanii* sp. nov. Canadian Journal of Microbiology, Ottawa, v.38, p.501-505, 1992.
- MORSE, W.J. History of soybean production. In: MARKLEY, K.L. (Ed.). Soybeans and soybean products. New York: Interscience Publ. Inc., 1950. v.1, p.3-59.
- MYTTON, L.; SKØT, L. Breeding for improved symbiotic nitrogen. In: HAYWARD, M.D.; BOSEMARK, N.O.; ROMAGOSA, I. (Eds.). Plant breeding: principles and prospects. London: Chapman & Hall, 1993. p.451-472.
- NEVES, M.C.P.; HUNGRIA, M. The physiology of nitrogen fixation in tropical grain legumes. CRC Critical Reviews in Plant Sciences, Boca Raton, v.6, p.267-321, 1987.
- NEVES, M.C.P.; DIDONET, A.D.; DUQUE, F.F.; DÖBEREINER, J. Rhizobium strain effects on nitrogen transport and distribution in soybeans.

- Journal of Experimental Botany, Oxford, v.36, n.169, p.1179-1192, 1985.
- NUTMAN, P.S. Hereditary host factors affecting nodulation and nitrogen fixation. In: GIBSON, A.H.; NEWTON, W.E. (Eds.). Current perspectives in nitrogen fixation. Camberra: Australian Academy of Science, 1981. p.194-204.
- OLIVEIRA, L.A.; VIDOR, C. Capacidade competitiva de estirpes de Rhizobium japonicum em solos com alta população deste Rhizobium. Revista Brasileira de Ciência do Solo, Campinas, v.8, p.49-55, 1984.
- PERES, J.R.R. Seleção de estirpes de Rhizobium japonicum e competitividade por sítios de infecção nodular em cultivares de soja (Glycine max (L.) Merrill. Porto Alegre: UFRGS-FA, 1979. 81p. Dissertação de Mestrado.
- PERES, J.R.R.; VARGAS, M.A.T.; SUHET, A.R. Variabilidade de eficiência em fixar nitrogênio entre isolados de uma mesma estirpe de *Rhizobium japonicum*. Revista Brasileira de Ciência do Solo, Campinas, v.8, p.193-196, 1984.
- PIERCE, M.; BAUER, W.D. A rapid regulatory response governing nodulation in soybean. Plant Physiology, Rockville, v.90, p.1347-1352, 1983.
- RONIS, D.H.; SAMMONS, D.J.; KENWORTHY, W.J.; MEISINGER, J.J. Heritability of total and fixed nitrogen content of the seed in two soybeans populations. Crop Science, Madison, v.25, p.1-4, 1985.
- TRIPLETT, E.W.; SADOWSKY, M.J. Genetics of competition for nodulation of legumes. Annual Review of Microbiology, Palo Alto, v.46, p.399-428, 1992.
- VARGAS, M.A.T.; MENDES, I. de C.; SUHET, A.R.; PERES, J.R.R. Duas novas estirpes de rizóbio para a inoculação da soja. Planaltina: Embrapa-CPAC,

- 1992. 3p. (EMBRAPA-CPAC. Comunicado técnico 62).
- VARGAS, M.A.T.; MENDES, I. de C.; SUHET, A.R.; PERES, J.R.R. Serological distribution of Bradyrhizobium japonicum from Brazilian - "Cerrados" areas under soybean cultivation. Revista de Microbiologia, São Paulo, v.24, n.4, p.239-243, 1993.
- VARGAS, M.A.T.; PERES, J.R.R.; SUHET, A.R. Fixação de nitrogênio atmosférico pela soja em solos de cerrado. Informe Agropecuário, Belo Horizonte, v.8, p.20-23, 1982.
- VEST, G.; GRANT, C.; CALDWELL, B.E. Rj<sub>4</sub>-A gene conditioning inefective nodulation in soybeans. Crop Science, Madison, v.12, p.692-694, 1972.
- VEST, G.; WEBER, D.F.; SLOGER, C. Nodulation and nitrogen fixation. In: CALDWELL, B.E. (Ed.). Soybeans: improvement, production, and uses. Madison: ASA, 1973. p.353-390.
- VINCENT, J.M. Manual for the practical study of root nodule bacteria. Oxford: Blackwell, 1970. 164p. (IBP Handbook, 15).
- WILSON, P.W. The biochemistry of symbiotic nitrogen fixation. Madison: University of Wisconsin Press, 1940. 130p.
- WILLIAMS, L.F.; LYNCH, D.L. Inheritance of a nonnodulating character in the soybean. Agronomy Journal, Madison, v.46, p.28-29, 1954.
- WOLYN, O.J.; ATTEWEL, J.; LUDDEN, P.W.; BLISS, F.A. Indirect measures of N<sub>2</sub> fixation in common bean (*Phaseolus vulgaris* L.) under field conditions: the role of lateral root nodules. Plant and Soil, Dordrecht, v.113, p.181-187, 1989.
- ZONTA, E.P.; MACHADO, A.A.; SILVEIRA JÚNIOR, P. Sistema de Análise Estatística SANEST, Registro SEI Nº 066060. Pelotas: UFPEL, 1982. 161p.