ATIVIDADE DE FLAVONÓIDES SOBRE ESPOROS DO FUNGO MICORRÍZICO GIGASPORA GIGANTEA IN VITRO

AMALIA GISELA FERSULA ROMERO e JOSÉ OSWALDO SIQUEIRA

RESUMO - Os flavonóides vegetais, além de atuarem em diversos processos do crescimento e desenvolvimento das plantas, são bastante ativos na relação planta-microorganismos. Na simbiose rizóbio-leguminosas, por exemplo, eles atuam como sinais moleculares, ativando a transcrição de genes essenciais na interação bactéria-planta. Apesar da ação estimulante de alguns flavonóides, seus efeitos sobre os fungos micorrízicos são ainda pouco conhecidos. No presente trabalho, conduzido na Universidade Federal de Lavras-UFLA., avaliaram-se os efeitos de sete flavonóides vegetais sintéticos sobre a germinação e crescimento micelial do fungo micorrízico arbuscular Gigaspora gigantea in vitro. Os flavonóides foram testados em concentrações de 1, 2, 4 e 8 μM em meio agar-água 1%. Todos os flavonóides estudados mostraram-se ativos em pelo menos um dos parâmetros avaliados. A germinação dos esporos foi estimulada pela formononetina e hesperetina a 2 μM e inibida pela primeiramente concentrada de 8 μM. O número de tubos germinativos foi reduzido pela biochanina A, querçetina e naringenina nas concentrações mais baixas. O crescimento micelial foi estimulado pela apigenina e hesperetina a 1 μM e inibida pela biochanina A, enquanto a ramificação do tubo germinativo foi favorecida pela naringenina e formononetina a 2 μM e inibida pela morina a 2 μM. Conclui-se que os flavonóides exercem efeitos diferenciados sobre G. gigantea.

Termos para indexação: fungos do solo, metabólitos vegetais, relação planta-microorganismos, micorrizas, sinais moleculares.

ACTIVITY OF FLAVONOIDs ON SPORES OF THE MYCORRHIZAL FUNGUS GIGASPORA GIGANTEA IN VITRO

ABSTRACT - In addition to their effects on plant growth and developmental processes, plant flavonoids are active molecules in a variety of plant-microorganism relationships. In rhizobium-legume symbiosis, they act as signal molecules inducing transcription of symbiotic genes, which are essential for nodulation. In spite of the stimulating activity of certain plant flavonoids on mycorrhizal fungi, their effects on these fungi are still not well understood. In this study, conducted at the Federal University of Lavras-UFLA., in Lavras, MG, Brazil, the effects of seven synthetic flavonoids on germination and growth of the arbuscular mycorrhizal fungus Gigaspora gigantea were evaluated. Flavonoids were dissolved in methanol and incorporated into 1% agar medium, at concentrations of 1, 2, 4 and 8 μM. All flavonoids tested were shown to be active on at least one of the parameters assessed. Spore germination was enhanced by formononetin and hesperetin at 2 μM, whereas it was inhibited by the former at 8 μM. The number of germs tube per spore was reduced by biochanin A, querçetin and naringenin at low concentrations. Mycelial growth was stimulated by apigenin and hesperetin at 1 μM and inhibited by biochanin A. Germ tube branching was enhanced by naringenin and formononetin at 2 μM and inhibited by morin at the same concentration. It is concluded that plant flavonoids exhibit differentiated effects on spores of the symbiotrophic fungus G. gigantea.

Index terms: soil fungi, plant metabolites, plant-microorganisms relationships, mycorrhizae, molecular signals.

INTRODUÇÃO

As plantas sintetizam, acumulam e liberam através de excreções e exsudações, uma variedade imensa de substâncias orgânicas, dentre as quais destacam-se os flavonóides, que desempenham funções ecológicas e funcionais diversas, como aleloqu-
Materiais e métodos

Para a avaliação dos efeitos de compostos fenólicos na germinação e crescimento micelial de esporos de *Gigaspora gigantea* (Nicholson & Gerdemann) conduziram-se vários ensaios no laboratório de Microbiologia de Solo da Universidade Federal de Lavras (UFLA). MG. Esporos de G. gigantea foram multiplicados em vasos de cultivo com *Brachiaria decumbens* Stapf. Prain e extraídos por peneiramento úmido (Gerdemann & Nicholson, 1963), centrifugados em água durante três minutos, a 3.000 rpm, e em sacarose 30% por dois minutos, a 2.000 rpm. Esporos foram transferidos para filtros de membrana, selecionados e desinfetados com hipoclorito de sódio 1% (5% de cloro livre) e estreptomicina 100 ppm, durante 20 minutos, e de lavagem com água destilada e autoclavada, conforme Colozzi-Filho (1988). Os esporos desinfetados foram transferidos, com auxílio de uma pinça de ponta fina, para placas-de-petri (6 cm de diâmetro), transferindo-se dez esporos/placa contendo 6 ml do meio ágar-água 1%. O meio foi feito com ágar Difco purificado, e suplementado com os diversos flavonóides em estudo (Tabela 1).

Os compostos, todos sintéticos, foram dissolvidos em pequeno volume de metanol, que não ultrapassou 1% do volume final do meio, e incorporados assepticamente ao meio fundido e mantido a 60°C. Após esfriamento do meio, os esporos foram colocados na superfície do ágar. As placas foram vedadas com parafilm e incubadas em estufa a 28°C, por quinze dias. O estudo constou de sete compostos, testados separadamente nas concentrações de 0, 1, 2, 4 e 8 µM, sendo cada parcela experimental constituída por uma placa com dez esporos em delineamento inteiramente casualizado, com dez repetições, totalizando-se 100 esporos por tratamento. A testemunha, em cada experimento, recebeu apenas álcool. Avaliaram-se, através de observações microscópicas (30x), porcentagens de germinação aos cinco, dez e quinze dias de incubação, e o crescimento micelial, apenas aos quinze dias. Consideraram-se germinados os esporos que apresentaram pelo

<table>
<thead>
<tr>
<th>Nome comum</th>
<th>Nome químico</th>
<th>Peso molecular</th>
<th>Fonte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formononetina</td>
<td>7-hidroxi-4' - methoxiisoflavona</td>
<td>320,54</td>
<td>Rhizotech, Inc</td>
</tr>
<tr>
<td>Biochanina A</td>
<td>Dihidroxi 4' - methoxiisoflavona</td>
<td>284,30</td>
<td>Sigma</td>
</tr>
<tr>
<td>Naringenina</td>
<td>4', 5, 7 - trihidroxiisoflavona</td>
<td>272,30</td>
<td>Sigma</td>
</tr>
<tr>
<td>Hesperetina</td>
<td>3, 5, 7, - trihidroxi - 4 - methoxiisoflavona</td>
<td>302,27</td>
<td>Sigma</td>
</tr>
<tr>
<td>Morina</td>
<td>2, 3, 4, 5, 7 - pentahidroxiisoflavona</td>
<td>302,20</td>
<td>Sigma</td>
</tr>
<tr>
<td>Quercetina</td>
<td>3, 3', 4', 5', 7 - pentahidroxiisoflavona</td>
<td>338,26</td>
<td>Sigma</td>
</tr>
<tr>
<td>Apigenina</td>
<td>4', 5, 7 - trihidroxiisoflavona</td>
<td>270,24</td>
<td>Sigma</td>
</tr>
</tbody>
</table>

menos um tubo germinativo. O crescimento micelial dos esporos germinados foi avaliado pelo número de tubos germinativos, ramificações do mesmo (contagem direta), e tamanho das hifas ou crescimento micelial, sendo, este último, através de notas, variando de 1 a 5, em que 1 corresponde ao esporo apenas germinado, aumentando estas sucessivamente até atingir a nota 5, que corresponde ao maior tamanho do campo de visibilidade do microscópio estereoscópico a 30x.

Na análise estatística, os dados relativos à porcentagem de germinação foram transformados segundo arco seno da raiz de x/100, e todos os dados foram submetidos à análise de variância e também regressão polinomial para algumas respostas, de acordo com o programa SANEST (Zonta et al., 1984).

RESULTADOS E DISCUSSÃO

A germinação dos esporos foi elevada, variando de 36 a 75% aos cinco dias, de 48 a 76% aos dez dias, e de 48 a 81% aos quinze dias de incubação, o que indica a elevada viabilidade dos esporos da *G. gigantea* nas condições do estudo. Nenhum dos sete flavonóides testados exerceu efeito significativo na germinação dos esporos aos cinco dias de incubação; apenas a hesperetina e a formononetina, mostraram-se ativas sobre a germinação dos esporos aos dez dias (Fig. 1). A hesperetina a 4 μM, aumentou a germinação em 40% sobre o controle, enquanto a formononetina exerceu pequeno estímulo significativo (4%) na concentração de 2 μM e redução de 29% quando em concentração de 8 μM (Fig. 1a). Respostas semelhantes foram verificadas quanto à germinação aos quinze dias (Fig. 1b). O número de tubos germinativos por esporo não foi estimulado por nenhum flavonóide, sendo reduzido por biochanina A, quercetina e naringenina em até 27%, mesmo em baixas concentrações (Fig. 1c).

O crescimento micelial foi estimulado em 12 e 15% por hesperetina e apigenina, em concentração de 1 μM, respectivamente, e inibido pela biochanina A em até 20% (Fig. 2a). O efeito inibitório da biochanina A aumentou com a elevação da concentração (y = 4,4 + 0,27x + 0,02x^2; R^2 = 0,94; P = 0,019), fato não observado em nenhum outro composto estudado. O número de ramificações do tubo germinativo do esporo foi reduzido pela morina a 2 μM e estimulado pela formononetina e naringenina, também a 2 μM (Fig. 2b).

FIG 1. Efeito de flavonóides (% do controle) ativos na percentagem de germinação aos 10 (a) e 15 (b) dias de incubação e no número de tubos germinativos (c) em esporos de *Gigaspora gigantea*. For=formononetina; Hes=hesperetina; Bio=biochanina A; Que=quercetina e Nar=naringenina. Números entre parênteses, nas barras, representam a concentração (μM) adicionada ao meio.

FIG 2. Efeito de flavonóides (% do controle) ativos no crescimento (a) e ramificação do tubo germinativo (b) em esporos de *Gigaspora gigantea*. Bio=biochanina A, Hes=hesperetina; Api=apigenina; Mor=morina, For=formononetina e Nar=naringenina. Números entre parênteses, nas barras, representam a concentração (μM) adicionada ao meio.
e formononetina aumentaram a ramificação do tubo germinativo, respectivamente, em 26 e 14%.

Os esporos dos fungos micorrizicos arbusculares, que são simbiotróficos obrigatórios, possuem informação genética e reserva energética suficientes para germinação e crescimento micelial inicial, na ausência de raízes vivas (Siqueira et al., 1985). Evidências experimentais indicam a ausência de efeito das raízes ou seus exsudatos na germinação, devendo o caráter de biotrófico obrigatório se manifestar em etapa posterior à germinação, como no crescimento e diferenciação micelial, quando a presença da planta torna-se essencial. As indicações de que a qualidade e não a quantidade dos exsudatos radiculares ou celulares é importante para estes fungos (Elias & Safir, 1987; Bécard & Piché, 1989; Paula & Siqueira, 1990), e que certos flavonóides são ativos sobre eles (Gianinazzi-Pearson et al., 1989; Nair et al., 1991; Phillips & Tsai, 1992), dão sustentação à ideia do envolvimento destes compostos como sinais moleculares ou mediadores nutricionais, importantes na relação fungo-planta e no estabelecimento da simbiose micorrízica (Siqueira et al., 1991b). Assim, as respostas relatadas neste e em outros estudos, já citados, para parâmetros da fase filamentosa, são esperados, mas os efeitos na germinação como os encontrados no tocante à hesperetina (Fig. 1a,1b) e quercetina, apigenina e naringenina por Gianinazzi-Pearson et al. (1989) e Phillips & Tsai (1992), são, de certo modo, surpreendentes, considerando-se a facilidade de germinação dos esporos da maioria das espécies de fungos micorrízicos arbusculares (Siqueira et al., 1985).

Os efeitos estimulantes da apigenina, hesperetina, formononetina e naringenina no crescimento ou ramificação micelial corroboram os relatados de outros estudos (Gianinazzi-Pearson et al., 1989; Nair et al., 1991; Chabot et al., 1992; Phillips & Tsai, 1992) com outras espécies fúngicas e em condições diferentes. Quercetina, considerada estimulante (Bécard et al., 1992; Phillips & Tsai, 1992; Baptista & Siqueira, 1994), mostrou-se inativa no crescimento de G. gigantea, no presente estudo. No estudo de Baptista & Siqueira (1994) com esporos pré-germinados de G. gigantea, constatou-se atividade estimulante por quercetina na concentração de 10 μM. Morina, considerada estimulante para G. margarita por Chabot et al. (1992), mostrou-se inibitória para G. gigantea mesmo em concentração baixa (Fig. 2b).

Os resultados dos efeitos dos flavonóides vegetais sobre os fungos micorrízicos arbusculares são ainda bastante inconsistentes, mas suficientes para indicar o envolvimento destes compostos na interação fungo-planta. Seus efeitos são dependentes do tipo de composto, da sua concentração e das condições de crescimento, como meio de cultura e fatores específicos, como enriquecimento de CO2 (Bécard et al., 1992) que, embora apresente efeito sinérgico com os flavonóides, não parece ser essencial para a atividade destes compostos sobre estes fungos in vitro. Tal como ocorre em outros sistemas simbióticos (Lynn & Chang, 1990), os efeitos dos flavonóides são altamente controlados pela sua concentração no meio. É difícil, entretanto, estabelecer relações entre a concentração em condições experimentais controladas e as existentes na rizosfera, que se situam em torno de 5 μM (Graham, 1991). Como os flavonóides atuam também na colonização micorrízica (Siqueira et al., 1991b; Silva-Júnior, 1993), eles são, possivelmente, os componentes dos exsudatos radiculares responsáveis por mecanismo molecular ativo do processo de colonização radicular e estabelecimento da simbiose, conforme já preconizado (Gianinazzi-Pearson et al., 1989; Nair et al., 1991; Siqueira et al., 1991b).

CONCLUSÕES

1. Os flavonóides exercem efeitos diferenciados sobre a Gigaspora gigantea.
2. Dos sete flavonóides testados, apenas a formononetina e a hesperetina são ativas na germinação.
3. O crescimento micelial é estimulado por hesperetina e apigenina, e inibido por biochanina A.
4. A ramificação do tubo germinativo é estimulada por formononetina a 2 μM e naringenina e inibida por morina.

REFERÊNCIAS

ATIVIDADE DE FLAVONÓIDES SOBRE ESPOROS DO FUNGO

Physiological and Molecular Plant Pathology, v.29, p.95-103, 1986.

SIQUEIRA, J.O.; SAFIR, G.R.; NAIR, M.G. Stimulation of vesicular-arbuscular mycorrhiza formation and

