IDENTIFICAÇÃO E CONTROLE DA LEUCOSE ENZOÓTICA BOVINA (LEB)
EM UM REBANHO LEITEIRO

JOÃO LARI FELIX CORDEIRO, FRANCISCO CARLOS DESCHAMPS,
EDISON MARTINS e VERA MARIA VILLAMIL MARTINS

RESUMO - A identificação de leucose enzoótica bovina (LEB) na forma tumoral foi o ponto de partida para a adoção de medidas de identificação e controle da enfermidade em um rebanho. Ao longo de três anos, cinco testes sorológicos (imunodifusão em gel de agar - AGID), foram utilizados para identificação de animais soropositivos no rebanho. Os animais soropositivos foram eliminados do rebanho. Até o terceiro teste foram encontrados animais soropositivos. Nos dois últimos testes, mesmo com intervalo de um ano entre o quarto e o quinto, todos os animais testados foram negativos. Isto comprova que a realização de apenas um teste é insuficiente para detectar todos os animais soropositivos em um rebanho, e que, por outro lado, a eliminação seletiva de animais soropositivos constitui medida adequada para erradicação da doença no rebanho.

Termos para indexação: LEB tumoral, virose, testes sorológicos, animais soropositivos, saúde animal.

IDENTIFICATION AND CONTROL OF BOVINE ENZOOTIC LEUKOSIS
IN A DAIRY HERD

ABSTRACT - A clinical case of bovine enzootic leukemia was the start point for other actions of identification and control of the disease in a dairy herd. During three years, five serological tests of agar gel immunodiffusion (AGID) test, were carried out to identify the seropositive animals. These animals were eliminated from the herd. Seropositive animals were identified up to the third serological test. In both 4th and 5th tests, all animals were seronegatives. This shows that one serological test is not enough for identification of all seropositive animals in the herd. On the other hand, the selective elimination of seropositive animals was adequate procedure to eradicate bovine leukemia from the herd.

Index terms: leukemia on tumoral form, virosis, seropositive animals, serological tests, animal health.

INTRODUÇÃO

A leucose enzoótica bovina (LEB), também conhecida como leucemia bovina ou linfossarcoma, pode apresentar-se nas formas subclínica ou tumoral. Nesta última, manifesta-se com maior frequência em órgãos como abomaso, coração e útero (Bendixen, 1965).

O agente causador da enfermidade é um retrovírus tipo C, conhecido comumente como vírus da leucose bovina (BLV), (Miller et al., 1969). É um vírus RNA envelopado, que infecta principalmente os linfócitos B, produzindo um pró-vírus DNA (Graves et al., 1977). Este, ao integrar-se no genoma do linfócito, induz a produção tumoral destas células.

A presença da LEB no Brasil já foi documentada por Alencar Filho et al., (1979), Romero & Rowe (1981), Modena et al. (1984), Gomes et al. (1985), Flores et al. (1989), Martins (1989), Flores et al. (1990). As perdas econômicas decorrentes da presença da LEB não estão perfeitamente dimensionadas. Consideram-se, basicamente, as perdas por morte e condensação de carcaças, as...
quais podem não ser muito expressivas. Entretanto, maiores proporções podem ser assumidas, na medida em que, atualmente, muitos países exigem atestado negativo de LEB, quando da importação de animais ou sêmen bovino.

Existem evidências de que nos meses em que a temperatura se apresenta mais elevada aumenta a transmissão por contato, em função da maior presença de insetos sugadores (Bench et al., 1978). Em áreas tropicais, o aumento do número de insetos sugadores aumenta a taxa de transmissão da doença. Outros sugadores, como morcegos e carrapatos, também são considerados vetores de transmissão (Graves & Ferrer, 1976, Romero et al., 1982).

A relação entre a ocorrência da LEB e doenças similares em humanos não foi devidamente comprovada (Ferrer, 1980; Pierce et al., 1986).

As formas de controle e erradicação da doença dos rebanhos passam por severas medidas de vigilância sanitária animal. O sucesso no controle ou erradicação da doença está na identificação, separação e eliminação dos animais positivos. Além disso, é importante a adoção de práticas de manejo que diminuam as possibilidades de transmissão do agente. Frequentes testes sorológicos nos animais do rebanho, bem como nos introduzidos na propriedade, são importantes medidas para a prevenção da doença. Como o período entre a contaminação e o desenvolvimento de títulos detectáveis por testes sorológicos é de algumas semanas, a realização de apenas um teste não é suficiente para detectar todos os portadores. Um exemplo que demonstra a possibilidade de sucesso em programas de controle e erradicação da doença em rebanhos leiteiros é descrito por Johanson et al. (1985).

O colostro e o leite oriundo de vacas infectadas apresentam partículas virais e linfócitos infectados, o que possibilita a contaminação de bezerros em aleitamento (Miller & Maaten, 1979). Diante disso, pode-se alimentar os bezerros com leite ou colostro de vacas negativas ou aqueles a uma temperatura de 56°C por 30 minutos (Diglio & Ferrer, 1976). Para a preservação do material genético de rebanhos de alto padrão, contaminados com a LEB, a técnica de transferência de embriões pode ser uma alternativa viável (Hare et al., 1985).

O objetivo do presente trabalho é apresentar a descrição de um caso de LEB na forma tumoral, bem como os resultados do controle no rebanho a partir do diagnóstico da doença.

MATERIAL E MÉTODOS

O rebanho em estudo pertence à EPAGRI - Estação Experimental de Itajai Estado de Santa Catarina, Brasil (latitude 26°54′28″, longitude 48°39′43″ e altitude 1 m). Este rebanho foi constituído a partir de 1980, com fêmeas de várias categorias, mestiços da raça holandesesa, adquiridos de produtores da região. A partir de 1985, foram introduzidos novos animais da raça Jersey, adquiridos nas mesmas condições. O rebanho estava estabilizado com 52 animais da raça Jersey e Holandesas, destinados à pesquisa e produção de leite. O diagnóstico da LEB no rebanho foi efetuado a partir da ocorrência de um caso na forma de linfossarcoma em uma fêmea da raça Jersey, com nove anos de idade e peso de 520 kg. O animal foi introduzido no rebanho com cerca de cinco anos de idade, sendo proveniente da cidade de Presidente Getúlio, no mesmo Estado (latitude 27°03′02″, longitude 49°37′22″ e altitude de 255 m), (Vetterle et al., 1986). O animal era utilizado em trabalhos de nutrição e avaliação de alimentos para ruminantes e era portador de fistula ruminual. Devido ao seu histórico clínico desfavorável, o animal foi sacrificado utilizando-se uma solução saturada de sulfato de magnésio (Santos & Mello, 1983). Antes do sacrifício foram coletadas amostras de sangue para a realização do teste de imunodifusão em gel de ágar (AGID), a fim de detectar a possível presença de anticorpos contra o vírus da LEB. Durante a necropsia foram coletados fragmentos de linfonodos, músculos e massas tumorais, que posteriormente foram fixados em formalina 10% e enviados para exame histopatológico. No momento do sacrifício, o rebanho foi identificado através do AGID, com antígeno AGNS/HGP-88-03, produzido.
pelo CNPSA-EMBRAPA, seguindo os critérios descritos por Miller et al. (1969). Os testes sorológicos para identificação dos animais positivos foram realizados com intervalo de seis meses, tendo sido examinados todos os animais que apresentavam idade superior a um ano. Nas filhas de vacas positivas, os testes sorológicos foram aplicados com idade inferior a um ano.

RESULTADOS E DISCUSSÃO

A suspeita clínica de LEB ocorreu quando um animal dotado de fistula ruminal passou a apresentar um quadro de anorexia, emagrecimento progressivo, parada na nuperação, frequência cardíaca e respiratória aumentadas (110 e 45/10 min, respectivamente), cabeça estendida, engurgitamento das veias jugulares, edema de peito, dor à palpiação torácica, dificuldade para caminhar, deitar-se e levantar-se, tendo finalmente apresentado a paralisia do plexo lombo-sacro.

A caracterização histopatológica das massas tumorais encontradas no animal sacrificado indicaram a presença de grande quantidade de células de origem linforreticular, células em mitose e neoplásicas, caracterizando o linfossarcoma. As massas tumorais se localizavam na cavidade abdominal, aderidas à parede dos órgãos ou neles infiltradas. Os órgãos onde as massas tumorais se localizaram com maior extensão foram o rumen-retículo (massa medindo 30 x 20 x 4 cm), e na área do útero, onde foi encontrada uma massa medindo 30 x 20 x 10 cm, pesando cerca de 7,8 kg. Foi encontrada, também, massa tumoral (8 x 4 x 2 cm), nos músculos peitoral superficial e profundo e nos músculos obliquo e transverso abdominal esquerdo. As Fig. 1, 2 e 3 apresentam o aspecto das principais massas tumorais que foram encontradas no animal.

A descrição do presente caso, bem como a localização dos achados de necropsia, apresentam-se de acordo com a descrição disponível na literatura quanto ao quadro de leucose enzoótica bovina na forma tumoral (Bendixen, 1965). Aspecto relevante é observar as dimensões e a forma das massas tumorais, principalmente pelo fato de não se apresentarem, na maioria, infiltradas no tecido, mas externamente aos mesmos. Isto pode sugerir que os efeitos negativos dos tumores somente de-vam manifestar-se quando estiverem em avanço do estado de crescimento, ou infiltrados nos tecidos. Neste caso, o volume neles ocupado passa a exercer grande pressão sobre os órgãos próximos, limitando os movimentos e comprometendo lhes o funcionamento.

O diagnóstico da presença da leucose no rebanho pode ser um indicativo de que a doença encontra-se disseminada no rebanho do Estado (Martins, 1989), uma vez que a doença foi diagnosticada em outras regiões do País (Alencar Filho et al., 1979, Romero & Rowe, 1981, Mode- na et al., 1984, Gomes et al., 1985, Flores et al., 1989; Flores et al., 1990). Este fato pode sugerir a origem da doença, pois o rebanho inicial da Estação não era constituído de animais adquiridos na região. Por outro lado, as características do rebanho, bem como as práticas de manejo, propiciam as condições favoráveis para a disseminação da doença (Piper et al., 1979, Sorensen, 1979).

A realização de testes sorológicos foi a alternativa para se determinar o grau de disseminação da doença no rebanho. Os resultados quanto à identificação dos soropositivos estão apresentados na Tabela 1. Pode ser observado que a realização de apenas um teste sorológico é insuficiente para detectar todos os animais soropositivos em um rebanho (Johnson et al., 1985). Isto se confirma na medida em que ainda no terceiro teste sorológico foram encontrados animais soropositivos.

Seis filhas de vacas soropositivas eram bezerros quando da identificação da enfermidade nas mães. As filhas foram então submetidas ao exame, mesmo tendo menos de um ano de idade. Em três delas foram realizados quatro testes sorológicos no período, e foram todos negativos. Nas outras duas, foram realizados dois e um teste, respectivamente, também negativos. Estas observações contrariam, no presente caso, a possibilidade de transmissão da doença via intrauterina ou na fase de aleitamento, conforme sugeriram Evermann et al. (1978), Miller & Maaten (1979), Piper et al. (1979).

Pode-se observar que o efeito da eliminação dos soropositivos foi marcante no sentido de reduzir a prevalência da doença no rebanho. Isto demonstra que a medida, embora drástica, é uma
FIG. 1. Aspecto da massa tumoral encontrada na parede externa do rúmen-riículo, medindo cerca de 30x20x4 cm.

FIG. 2. Aspecto da massa tumoral encontrada externamente ao útero, medindo cerca de 30 x 20 x 10 cm e pesando cerca de 7,8 kg.

FIG. 3. Aspecto da massa tumoral encontrada na parede externa do músculo oblíquo e transverso abdominal esquerdo, medindo cerca de 8 x 4 x 2 cm.
TABELA 1. Resultado dos testes para detecção de soropositivos no rebanho da Estação Experimental da EPAGRI - Itajai, SC.
O intervalo médio entre os testes foi de 6 meses.

<table>
<thead>
<tr>
<th>Teste n°</th>
<th>N.º de amostras</th>
<th>N.º de soropositivos</th>
<th>%</th>
<th>Idade média</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34</td>
<td>12</td>
<td>35,00</td>
<td>6,17</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>1</td>
<td>0,04</td>
<td>0,00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>23</td>
<td>3</td>
<td>0,13</td>
<td>4,67</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>0</td>
<td>0,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5*</td>
<td>29</td>
<td>0</td>
<td>0,00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* O intervalo de tempo decorrido entre o quarto e o quinto teste foi de 12 meses.

forma eficaz de erradicação da doença. Certamente esta medida pode trazer implicações econômicas quando aplicada em um rebanho comercial. Entretanto, o monitoramento através de testes sorológicos periódicos pode auxiliar na adoção de medidas que permitam controlar a enfermidade do rebanho. Medidas como o controle sorológico na entrada de animais novos no rebanho, manejo isolado dos animais soropositivos e a eliminação gradativa dos positivos, podem ser determinantes no controle da enfermidade.

CONCLUSÕES

1. A utilização de testes sorológicos (imunodifusão em gel de agar - AGID) foi um procedimento adequado para identificação da LEB no rebanho.

2. Para a identificação de todos os animais soropositivos do rebanho, foi necessário repetir o teste sorológico por, pelo menos, três vezes.

3. A eliminação dos animais soropositivos, foi uma prática adequada para a eliminação da presença da LEB no rebanho.

REFERÊNCIAS

