AVALIAÇÃO DE FAMILIAS DE MEIOS-IRMÃOS DA POPULAÇÃO DE MILHO CMS-39 EM DUAS DENSIDADES DE SEMEADURA

EDER FERREIRA ARRIEL, CLESO A.P. PACHECO e MAGNO A.P. RAMALHO

RESUMO - Duzentas famílias de meios-irmãos da população de milho CMS-39 foram avaliadas nas densidades de 26 e 50 mil plantas/ha, no ano agrícola de 1988/89, em Lavras e Sete Lagoinhas, MG. Para cada densidade foram realizados dois experimentos, envolvendo 100 famílias cada, as quais foram avaliadas em um látice simples 10 x 10. As características peso de espigas e contribuição da segunda espiga para o peso total (CSEPT) foram analisadas e, estimados os parâmetros genéticos e fenotípicos. Constatou-se que com relação ao peso de espigas a população de milho CMS-39 apresentou herdabilidade (h²), ao nível de médias de famílias, superior a 40%, e que a estimativa da interação famílias x locais foi seis vezes superior à interação famílias x densidade de semeadura. No caso da participação da segunda espiga, ocorreu o contrário no que se refere às interações e a h² foi superior a 65%, permitindo antever sucesso com a seleção.

Termos para indexação: Zea mays, genética quantitativa, densidade de plantas, prolificidade.

EVALUATION OF MAIZE HALF-SIB FAMILIES IN DIFFERENT PLANT DENSITY

ABSTRACT - Two hundred half-sib families originated from CMS-39 maize population were evaluated in densities of 26,000 and 50,000 plants per hectare, in the growing season of 1988/1989 in Lavras and Sete Lagoinhas counties, State of Minas Gerais, Brazil. Plant densities were included in two experiments including one hundred families in each, evaluated in a 10 x 10 lattice design. Grain yield and the contribution of the second ear for total production were evaluated. Genetic and phenotypic variance components were estimated. It was found that for grain yield the CMS-39 maize population presented h² on a family means basis greater than 40% and that the family x locality interaction was six times higher than the Family x plant density interaction. The opposite happened to the second ear contribution for total production and the h² was greater than 65%, allowing for prediction for successful selection.

Index terms: Zea mays, quantitative genetics, plant density, prolificness.

INTRODUÇÃO

No Brasil, recomenda-se uma população de plantas de milho de 50.000/ha, entretanto, os levantamentos realizados mostram que muitos agricultores utilizam populações menores (Viegas 1966; Vieira et al. 1975 e Ferreira 1982). Entre razões apresentadas para esse procedimento, estão a semeadura do feijoeiro consorciado e a perspectiva de obtenção de espigas maiores (Ferreira 1982).

A utilização de uma menor população de plantas, visando a maior produtividade do feijão tem fundamento, haja vista que a totalidade dos trabalhos envolvendo populações de plantas de milho mostram que o desempenho da cultura do feijoeiro é bem superior quando consorciado com o milho em menores populações (Araújo 1978; Aidal et al. 1979 e Cruz et al. 1987).

Apesar da baixa população de plantas adotadas pelos agricultores, todos os programas de melhoramento e de avaliação de cultivares são sempre realizados na população recomendada pela pesquisa. É de se esperar que nem sempre o material com o melhor desempenho nesta condição repita o mesmo nas densidades menores. De modo geral os trabalhos realizados envolvendo densidades populacionais não apresentaram consistência no que se refere a ocorrência ou não de

O emprego de cultivares com maior prolíficidade tem sido sugerido nos casos em que se deseja utilizar uma menor população de plantas (Francis 1981 e Cruz et al. 1987). Isso por que, a maior produção de espiga por planta poderia compensar o menor número de plantas por área e, consequentemente, manter a produtividade nos níveis da densidade recomendada. Contudo, a maioria dos trabalhos envolvendo prolíficidade em milho visa ao maior número de espigas, sem se preocupar em quantificar a contribuição dessas espigas para a produção total.

Entre os materiais que estão sendo submetidos a seleção no Brasil, a população de milho CMS-39 destaca-se pela grande variabilidade, uma vez que esse material é um composto envolvendo 55 materiais, entre híbridos e variedades que se destacaram nos ensaios nacionais (Aguir 1986 e Pacheco 1987). Tem sido observado que essa população apresenta grande variação no índice de espigas. Sendo assim, esse material reúne condições favoráveis para se certificar se há interação entre famílias x densidades populacionais e se as famílias com maior índice de espigas apresentam melhor desempenho nas menores populações de plantas.

Assim, o presente trabalho foi realizado com os objetivos de verificar se há interação famílias de meios-irmãos x densidades de semeadura e, ao mesmo tempo, quantificar a contribuição da segunda espiga para a produção de grãos.

MATERIAL E MÉTODOS

Os experimentos foram conduzidos na Escola Superior de Agricultura de Lavras e no Centro Nacional de Pesquisa de Milho e Sorgo, em Sete Lagoas. Em cada local foram instalados quatro experimentos distintos. O primeiro envolveu 100 famílias na população de 26 mil plantas/ha e o segundo, as mesmas 100 famílias em 50 mil plantas/ha. O terceiro e o quarto envolveram outras 100 famílias avaliadas em 26 e 50 mil plantas/ha, respectivamente.

Cada experimento foi conduzido em látice 10 x 10 com duas repetições. As parcelas foram constituídas de uma linha com cinco metros de comprimento espaçadas de um metro. Foi colocado o dobro de sementes para ser realizado o desbaste posteriormente, visando a obter as densidades de plantas desejadas. Os tratos culturais foram realizados conforme o recomendado para a região. Foram avaliadas várias características, porém, serão apresentados neste trabalho apenas os dados do peso de espigas, contribuição da segunda espiga para o peso total - CSEPT (em porcentagem) e índice de espigas. Os detalhes da obtenção das estimativas dos parâmetros genéticos e fenotípicos foram apresentados por Arriel (1991).

RESULTADOS E DISCUSSÃO

O resumo das análises da variação conjunta, envolvendo densidades e locais, em relação ao peso de espigas, mostrou que as fontes de variação locais, densidades, famílias e famílias x locais apresentaram valores de F significativo (Tabela 1). A interação famílias x densidade de semeadura e a interação tripla famílias x densidades x locais foram não significativas.

A estimativa do coeficiente de variação foi de 19,08% (Tabela 1). Esse valor foi ligeiramente superior ao obtido por Pacheco (1987), trabalhando com essa mesma população de milho. Contudo, o valor obtido está dentro do limite que tem sido relatado em relação ao coeficiente de variação dos experimentos, na avaliação de famílias de meios-irmãos de milho, conduzidos no Brasil (Ramalho 1977).

Avaliou-se a contribuição da segunda espiga para o peso total (CSEPT), porque apenas o índice de espigas como normalmente é realizado na maioria das vezes não fornece uma indicação da contribuição da prolíficidade para a produtividade de grãos. Há casos em que a planta apresenta duas espigas, porém, a segunda espiga é pouco desenvolvida e sua contribuição não é
significativa para a produção total. Desse modo, quando se avalia a CSEPT, está-se quantificando efeito direto da prolificidade na produtividade total de espigas. Os resultados da análise da variância conjunta dessa característica são apresentados na Tabela 1. Observa-se que de modo geral esses resultados foram semelhantes ao da produtividade, exceto no que se refere à significância das interações. Nesse caso a maior contribuição foi da interação famílias x densidades, ao invés de famílias x locais. Assim, o comportamento das famílias com relação à prolificidade não é coincidente nas densidades de semeadura utilizadas.

É apresentado na Tabela 2 o desempenho médio das famílias de meios-irmãos referentes às ca-

TABELA 1. Resumo das análises de variância conjunta, com relação ao peso de espigas (PE) e CSEPT. Sete Lagoas e Lavras, (MG), 1988/89.

<table>
<thead>
<tr>
<th>F.V.</th>
<th>G.L.</th>
<th>PE ($x10^{4}$) (g/parcela de 5 m²)</th>
<th>CSEPT (%)/parcela</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locais (L)</td>
<td>1</td>
<td>49428,89**</td>
<td>36137,82**</td>
</tr>
<tr>
<td>Densidades (D)</td>
<td>1</td>
<td>21987,40**</td>
<td>71810,87**</td>
</tr>
<tr>
<td>Famílias (F)</td>
<td>198</td>
<td>111,59**</td>
<td>122,52**</td>
</tr>
<tr>
<td>F X L</td>
<td>198</td>
<td>65,94*</td>
<td>42,68</td>
</tr>
<tr>
<td>F X D</td>
<td>198</td>
<td>52,92</td>
<td>46,40*</td>
</tr>
<tr>
<td>F X D X L</td>
<td>198</td>
<td>46,75</td>
<td>36,40</td>
</tr>
<tr>
<td>Erro</td>
<td>648</td>
<td>48,67</td>
<td>38,22</td>
</tr>
<tr>
<td>Médias</td>
<td></td>
<td>3656,10</td>
<td>13,66</td>
</tr>
<tr>
<td>C.V. (%)</td>
<td></td>
<td>19,08</td>
<td>45,26</td>
</tr>
</tbody>
</table>

** e * Teste de F significativo aos níveis de 1% e 5% de probabilidade, respectivamente.

TABELA 2. Desempenho das famílias de meios-irmãos com relação às características peso de espigas (PE). CSEPT e índice de espigas (IE). Sete Lagôas e Lavras, (MG), 1988/89.

<table>
<thead>
<tr>
<th>Locais</th>
<th>População plantas (mil/ha)</th>
<th>PE (g/parcela de 5 m²)</th>
<th>CSEPT (% parcela)</th>
<th>IE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sete Lagoas</td>
<td>26</td>
<td>2642,08</td>
<td>15,21</td>
<td>1,36</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>3558,51</td>
<td>4,56</td>
<td>1,07</td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td>3100,29</td>
<td>9,88</td>
<td>1,22</td>
</tr>
<tr>
<td>Lavras</td>
<td>26</td>
<td>3928,72</td>
<td>27,46</td>
<td>1,61</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>4495,11</td>
<td>7,41</td>
<td>1,14</td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td>4211,91</td>
<td>17,44</td>
<td>1,37</td>
</tr>
<tr>
<td>Média</td>
<td>26</td>
<td>3285,40</td>
<td>21,33</td>
<td>1,49</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>4026,81</td>
<td>5,98</td>
<td>1,10</td>
</tr>
<tr>
<td>Média</td>
<td></td>
<td>3656,10</td>
<td>13,66</td>
<td>1,29</td>
</tr>
<tr>
<td>Testemunhas</td>
<td>BR 106</td>
<td>3050,23</td>
<td>12,36</td>
<td>1,24</td>
</tr>
<tr>
<td></td>
<td>BR 136</td>
<td>2649,32</td>
<td>8,44</td>
<td>1,12</td>
</tr>
</tbody>
</table>

racterísticas peso de espigas, CSEPT e índice de espigas. A produtividade média das 200 famílias nos dois locais e nas duas densidades de semeadura foi de 3656,10 g/parcela, o que corresponde a uma produtividade de aproximadamente 7,3 t/ha, superando a produtividade média das tesemnhas “BR 106” e “BR 136”, que produziram 6,1 e 5,3 t/ha, respectivamente. Isso mostra o potencial da população de milho CMS-39 para a produtividade de grãos, haja vista que a testemunha “BR 106” tem sido amplamente cultivada no Brasil, atingindo uma produtividade de grãos semelhante à de híbridos comerciais.

No que se refere ao efeito de densidade, independentemente do local, era de se esperar que na população de 26 mil plantas/ha a produtividade de espigas fosse a metade da obtida em 50 mil plantas/ha. Porém, a maior população de plantas superou em apenas 23% a produtividade obtida na menor população (Tabela 2). Já com as outras duas características avaliadas ocorreu o inverso, ou seja, a média do caráter na menor densidade superou a maior em 35% e 257% no índice de espigas e CSEPT, respectivamente. Assim, na menor densidade de plantas, devido à redução da competição entre plantas, além do maior desenvolvimento da primeira espiga, há um incremento no número de espigas por planta e um melhor desenvolvimento da segunda espiga, o que contribui para que a diferença em termos de produtividade total de espigas, nas duas densidades de plantas, não seja tão acentuada. Resultados semelhantes a estes foram relatados em outras oportunidades (Pereira Filho 1977 e Cruz et al. 1987).

A produtividade média de espigas em Sete Lagosas foram inferiores. Também com relação a CSEPT e índice de espigas, em Lavras, as plantas foram mais prolíficas e a segunda espiga apresentou um melhor desenvolvimento (Tabela 2).

As estimativas dos parâmetros genéticos e fenotípicos, referentes ao peso de espigas, comprovam a existência de variação entre as famílias e a possibilidade de se continuar tendo sucesso com a seleção (Tabela 3). Observa-se que a componente da interação famílias x locais (\(\sigma_{pl}^2 \)) corresponde a 76% da estimativa da variância genética entre famílias (\(\sigma_p^2 \)). A presença da interação famílias x locais de mesma magnitude foi obtida por Aguiar (1986) e Pacheco (1987) utilizando esse mesmo material genético, em Lavras e Sete Lagosas, porém apenas com a população de 50 mil plantas/ha.

Segundo Comstock & Moll (1963), é esperado que as famílias de meios-irmãos, por conterem apenas 1/4 da variação genética aditiva, apresentem pequena interação com o ambiente. Os resultados apresentados na literatura (Hallauer & Miranda Filho 1988; Aguiar 1986 e Pacheco 1987) e os obtidos nesse trabalho mostram que, mesmo utilizando famílias de meios-irmãos, a interação famílias x locais tem assumido valores elevados em alguns casos, chegando mesmo a apresentar magnitude semelhante à da variação genética entre as famílias. Das vinte famílias selecionadas em cada local, apenas 35% foram as mesmas (Tabela 4). No caso da interação famílias x densidades, observou-se também que a coincidência dos materiais selecionados foi baixa, mesmo em um mesmo local. Como a interação famílias x densidades foi baixa, a concordância esperada era maior. O que pode ter acontecido é que, como a interação reflete o desempenho

<table>
<thead>
<tr>
<th>Estimativas</th>
<th>PE (g/planta)</th>
<th>CSEPT (%/planta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_p^2)</td>
<td>158,45</td>
<td>9,98</td>
</tr>
<tr>
<td>(\sigma_{pl}^2)</td>
<td>120,00</td>
<td>1,12</td>
</tr>
<tr>
<td>(\sigma_{pd}^2)</td>
<td>21,36</td>
<td>2,50</td>
</tr>
<tr>
<td>(\sigma_{pld}^2)</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>CVg</td>
<td>6,53</td>
<td>23,13</td>
</tr>
<tr>
<td>h²</td>
<td>40,91</td>
<td>65,16</td>
</tr>
</tbody>
</table>

TABELA 3. Estimativas de parâmetros genéticos e fenotípicos, com relação ao peso de espigas (PE) e CSEPT. Sete Lagosas e Lavras (MG), 1988/89.

TABELA 4. Produção média de espigas despalhadas (g/parcela) das famílias (FAM) com melhor desempenho em cada densidade de semeadura e na média das duas densidades. Sete Lagoas e Lavras (MG), 1986/89.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>3538</td>
<td>7*</td>
<td>4817</td>
<td>7</td>
<td>4146</td>
<td>102*</td>
<td>5301</td>
<td>87*</td>
<td>7075</td>
<td>87</td>
<td>5962</td>
</tr>
<tr>
<td>192</td>
<td>3484</td>
<td>109*</td>
<td>4650</td>
<td>109</td>
<td>4059</td>
<td>40</td>
<td>5247</td>
<td>25</td>
<td>6659</td>
<td>25</td>
<td>5730</td>
</tr>
<tr>
<td>7*</td>
<td>3475</td>
<td>18</td>
<td>4512</td>
<td>77</td>
<td>3823</td>
<td>2</td>
<td>5245</td>
<td>101</td>
<td>6357</td>
<td>101*</td>
<td>5463</td>
</tr>
<tr>
<td>109*</td>
<td>3428</td>
<td>58</td>
<td>4512</td>
<td>61</td>
<td>3720</td>
<td>15</td>
<td>5245</td>
<td>73</td>
<td>6344</td>
<td>2</td>
<td>5461</td>
</tr>
<tr>
<td>182</td>
<td>3348</td>
<td>77*</td>
<td>4512</td>
<td>101**</td>
<td>3708</td>
<td>82</td>
<td>5052</td>
<td>28</td>
<td>6145</td>
<td>102</td>
<td>5401</td>
</tr>
<tr>
<td>181</td>
<td>3326</td>
<td>96</td>
<td>4310</td>
<td>176</td>
<td>3694</td>
<td>134</td>
<td>5046</td>
<td>161</td>
<td>5982</td>
<td>161**</td>
<td>5337</td>
</tr>
<tr>
<td>172</td>
<td>3323</td>
<td>38</td>
<td>4259</td>
<td>80</td>
<td>3688</td>
<td>115</td>
<td>5045</td>
<td>48</td>
<td>5950</td>
<td>163**</td>
<td>5303</td>
</tr>
<tr>
<td>158</td>
<td>3287</td>
<td>97</td>
<td>4259</td>
<td>181</td>
<td>3684</td>
<td>163*</td>
<td>5031</td>
<td>34</td>
<td>5929</td>
<td>15</td>
<td>5269</td>
</tr>
<tr>
<td>61</td>
<td>3283</td>
<td>164</td>
<td>4224</td>
<td>96</td>
<td>3674</td>
<td>18</td>
<td>5002</td>
<td>53</td>
<td>5904</td>
<td>72</td>
<td>5263</td>
</tr>
<tr>
<td>101*</td>
<td>3244</td>
<td>171</td>
<td>4210</td>
<td>34**</td>
<td>3620</td>
<td>37</td>
<td>4881</td>
<td>7</td>
<td>5893</td>
<td>150</td>
<td>5198</td>
</tr>
<tr>
<td>40</td>
<td>3234</td>
<td>176*</td>
<td>4195</td>
<td>18**</td>
<td>3603</td>
<td>187</td>
<td>4878</td>
<td>150</td>
<td>5900</td>
<td>34**</td>
<td>5182</td>
</tr>
<tr>
<td>80</td>
<td>3218</td>
<td>134</td>
<td>4177</td>
<td>161**</td>
<td>3562</td>
<td>77</td>
<td>4876</td>
<td>152</td>
<td>5843</td>
<td>93**</td>
<td>5166</td>
</tr>
<tr>
<td>16</td>
<td>3212</td>
<td>101*</td>
<td>4173</td>
<td>115</td>
<td>3556</td>
<td>194</td>
<td>4873</td>
<td>72</td>
<td>5803</td>
<td>73</td>
<td>5138</td>
</tr>
<tr>
<td>176*</td>
<td>3192</td>
<td>93</td>
<td>4257</td>
<td>93**</td>
<td>3555</td>
<td>87*</td>
<td>4849</td>
<td>2*</td>
<td>5677</td>
<td>18**</td>
<td>5137</td>
</tr>
<tr>
<td>198</td>
<td>3168</td>
<td>61*</td>
<td>4257</td>
<td>198</td>
<td>3552</td>
<td>11</td>
<td>4845</td>
<td>119</td>
<td>5665</td>
<td>126</td>
<td>5124</td>
</tr>
<tr>
<td>77*</td>
<td>3133</td>
<td>80</td>
<td>4157</td>
<td>40**</td>
<td>3544</td>
<td>14</td>
<td>4819</td>
<td>190</td>
<td>5650</td>
<td>40**</td>
<td>5058</td>
</tr>
<tr>
<td>70</td>
<td>3113</td>
<td>115</td>
<td>4150</td>
<td>97</td>
<td>3529</td>
<td>144</td>
<td>4805</td>
<td>126</td>
<td>5580</td>
<td>187</td>
<td>5013</td>
</tr>
<tr>
<td>4</td>
<td>3103</td>
<td>131</td>
<td>4146</td>
<td>105</td>
<td>3525</td>
<td>114</td>
<td>4742</td>
<td>163*</td>
<td>5575</td>
<td>152</td>
<td>4957</td>
</tr>
<tr>
<td>79</td>
<td>3079</td>
<td>113</td>
<td>4120</td>
<td>163**</td>
<td>3504</td>
<td>142</td>
<td>4731</td>
<td>102*</td>
<td>5500</td>
<td>162</td>
<td>4857</td>
</tr>
<tr>
<td>126</td>
<td>3044</td>
<td>105</td>
<td>4117</td>
<td>113</td>
<td>3479</td>
<td>141</td>
<td>4715</td>
<td>148</td>
<td>5427</td>
<td>194</td>
<td>4846</td>
</tr>
</tbody>
</table>

* e **. referem-se às famílias de meios-irmãos selecionadas nas densidades de 26 e 50 mil plantas/ha, em um mesmo local e na média das duas densidades de semeadura nos dois locais, respectivamente.

médio dos materiais avaliados, ela não foi expressiva. Mas isso não impede que alguns materiais, principalmente aqueles com melhor desempenho, não possam ter interagido com a densidade de semeadura.

Infelizmente não foram encontradas na literatura estimativas para a CSEPT que pudessem ser comparadas com as obtidas nesse trabalho. Contudo, a estimativa da herdabilidade, no sentido restrito ao nível de média de famílias, superior a 65% indica que há possibilidade de sucesso com a seleção para esse caráter.

CONCLUSÕES

1. A produtividade média de espiga despalhada, superior a 7000 kg/ha associada à herdabilidade superior a 40% entre as famílias de meios-

idade superior a 40% entre as famílias de meios-

irmãos, mostra o potencial da população CMS-39 para a seleção.

2. Além do aumento na produtividade da primeira espiga, o maior índice de espigas e, principalmente, a maior CSEPT na menor densidade de plantas contribuíram para que a redução média na produtividade total de espigas, em relação a maior densidade de plantas, fosse de apenas 23%.

3. Com relação à produtividade de grãos, a interação famílias x locais foi muito mais importante que famílias x densidades de plantas. O contrário ocorreu no caso do caráter CSEPT.

REFERÊNCIAS

AGUIAR, P.A. de. Avaliação de progêniês de meios-

irmãos da população de milho CMS-39 em
diferentes condições de ambiente. Lavras:

AIDAR, H.; VIEIRA, C.; OLIVEIRA, I.M. de;
VIEIRA, M. Cultura associada de feijão e milho.
II. Efeitos de populações de plantio simultâneo de
ambas as culturas. Revista Ceres, Viçosa, v.26,

ARAÚJO, A.G. de. Sistemas culturais milho-feijão:
efeitos de cultivares e populações de plantas de
milho em três sistemas de consociação. Viçosa:

ARRIEL, E.F. Avaliação de famílias de melos-irmãos
da população de milho CMS-39 em duas
121p. Dissertação de Mestrado.

CASTRO, E.M. de. Competição entre populações de
milho normais e braquíticos. Piracicaba:

COMSTOCK, R.E.; MOLL, R.H. Genotype-
environment interactions. In: HANSON, W.D.;
ROBINSON, H.F., (Eds.). Statistical genetics
and plant breeding. Washington: National
Academy of Science, 1963. p.164-196
(Publication, 82).

CRUZ, J.C.; RAMALHO, M.A.P.; SALLES, L.T.G.
de. Utilização de cultivares de milho puros no
consórcio milho-feijão. Pesquisa Agropecuária
1987.

FERREIRA, J.U. Adoção de tecnologia na cultura do
milho em Lavras, Minas Gerais. Viçosa: UFV,

FRANCIS, C.A. Development of plant genotypes for
multiple cropping systems. In: FREY, K.J. Plant
Breeding II. Ames: Iowa State University, 1981.
p.179-231.

HALLAUER, A.R.; MIRANDA FILHO, J.B. de.
Quantitative genetics in maize breeding. Ames:

LEITE, D.R. Comportamento de milho Zea mays L.
braquítico-2 em diferentes densidades de
Dissertação de Mestrado.

PACHECO, C.A.P. Avaliação de progêneses de melos-
irmãos da população de milho CMS-39 em
diferentes condições de ambientes. - 2. ciclo de
de Mestrado.

PEREIRA FILHO, J.A. Comportamento dos
cultivares de milho (Zea mays L.) "Piranho" e
"Centralmex" em diferentes condições de
ambientes, espaçamentos e níveis de nitrogênio.
Lavras: ESALQ, 1977. 84p. Dissertação de
Mestrado.

POZAR, G. Interação da arquitetura da planta e
espaçamento na produtividade do milho (Zea
Dissertação de Mestrado.

RAMALHO, M.A.P. Eficiência relativa de alguns
processos de seleção intrapopulacional no
milho baseados em famílias não endógenas.
Doutorado.

VIEGAS, G.P. Técnica cultural. In: INSTITUTO
BRASILEIRO DE POTASSA. Cultura e aduba-

VIEIRA, C.; AIDAR, H.; VIEIRA, R.F. População de
plantas de milho e de feijão no sistema de cultura
consociada utilizadas nas Zonas da Mata de Minas
Gerais. Revista Ceres, Viçosa, v.22, n.122,