ENRAIZAMENTO DE ESTACAS DE CAFÉ CV. 'MUNDO NOVO', SUBMETIDAS À TRATAMENTOS AUXINICOS E COM BORON1

ELIZABETH ORIKA ONO2, JOÃO DOMINGOS RODRIGUES3, SHEILA ZAMBELLO DE PINHO4 e SELMA DZIMIDAS RODRIGUES5

RESUMO - O presente trabalho teve como finalidade estudar o efeito de auxinas e/ou boro no enraizamento de estacas de café (Coffee arabica L. cv. Mundo Novo). As estacas foram obtidas de ramos ortotrópicos semi-leñosos de cafeiro, contendo dois nós e com aproximadamente 10 cm de comprimento. As bases das mesmas foram mergulhadas nas soluções de tratamento, constituídas de IBA ou NAA com e sem boro, durante 24 horas. Após os tratamentos, as estacas foram plantadas em bandejas de enraizamento, contendo vermiculita. O experimento foi montado num esquema inteiramente casualizado, contendo 4 repetições com 4 estacas cada uma. Para a avaliação do objetivo em questão foram realizadas as seguintes observações, mediante coleta após 90 dias do plantio: número total de raízes formadas, número médio de raízes/estaca e comprimento de raízes formadas. Através dos resultados, pode-se concluir que tratamentos das estacas com NAA 100 ppm mais boro levam a um melhor enraizamento de estacas de café.

Termos para indexação: Coffee arabica, ramos ortotrópicos, IBA, NAA.

ROOTING OF COFFEE CUTTINGS CV. 'MUNDO NOVO', SUBJECTED TO AUXINS AND BORON TREATMENTS

ABSTRACT - The present research had aimed at studying the auxins and or boron effect on rooting of coffee (Coffee arabica L. cv. Mundo Novo) cuttings. The cuttings were obtained from semi-hardwood orthotrope branches of coffee-tree, containing 2 nodes and with approximately 10 cm in length. The bases were dipped in treatment solutions composed of IBA or NAA with and without boro during 24 hours. After the treatments, the cuttings were planted in vermiculite. The following could be observed on cuttings taken ninety days after planting - total number of roots formed, average number of roots per cutting and root length. From the results obtained, it can be concluded that cutting treatment with NAA 100 ppm plus boro is responsible for the better rooting of coffee cuttings.

Index terms: Coffee arabica, orthotrope branches, IBA, NAA

INTRODUÇÃO

A propagação de plantas através da estiaca enraizadas, é comum o emprego de auxinas. Esta prática garante maior percentagem de estacas enraizadas e melhor qualidade e uniformidade de enraizamento. Os mesmos autores afirmam que o ácido indol-butanóico (IBA) e o ácido náftalenacetético (NAA) são as auxinas mais utilizadas no tratamento das estacas.

Segundo Eliasson & Areblad (1984), as auxinas sintéticas são mais estáveis que o ácido indol-acético, tanto nos tecidos vegetais como em solução. Essa estabilidade explica a diferença de resposta entre o IAA e as concentrações similares de auxinas sintéticas. Proebsting (1984), trabalhando com estacas de Pseudotsuga menziesii tratadas com NAA e IBA, verificou uma maior efetividade de

1 Aceito para publicação em 28 de dezembro de 1992
2 Biólogo, M.Sc., Pós-graduanda em Ciências Biológicas - Inst. de Bioc. - Campus de Botucatu - UNESP.
3 Eng. - Agr., Dr., Prof. - Adjunto/Livre-Docente - Dep. de Bot. - Inst. de Bioc. - Campus de Botucatu - UNESP.
4 Eng., Agra., Prof.f. - Adjunto/Livre-Docente - Dep. de Bioc. - Inst. de Bioc. - UNESP.
5 Biólogo, Dra., Prof.f. - Assist., Dep. de Bot. - Inst. de Bioc. - UNESP.

Hartmann & Kester (1983) afirmam ainda que, para acelerar o processo de formação de raízes nas estacas, é comum o emprego de auxinas. Esta prática garante maior percentagem de estacas enraizadas e melhor qualidade e uniformidade de enraizamento. Os mesmos autores afirmam que o ácido indol-butanóico (IBA) e o ácido náftalenacetético (NAA) são as auxinas mais utilizadas no tratamento das estacas.
do NAA em relação do IBA no estímulo ao enraizamento.

Além das auxinas, Brenchley & Warington (1927) demonstraram a necessidade do boro para o desenvolvimento e crescimento das raízes adventícias, fato mais tarde confirmado por Middleton et al. (1978). Estes últimos acrescentaram que o ácido bórico estimula o crescimento das raízes e, portanto, sua falta inibe o crescimento das mesmas.

Lewis (1980) enfatiza um relacionamento metabólico no qual o boro, compostos fenólicos e peroxidasas/IAA-oxidases interagem entre si e com as auxinas. A relação entre boro, auxina e atividade peroxidase/IAA-oxidase não está clara e existem opiniões contraditórias a esse respeito. Por exemplo, a atividade da peroxidase é aumentada pela falta de boro em muitos tecidos (Odlannah 1957), mas tem sua atividade diminuída em outros tecidos (Dutta & McIlrath 1964). Além disso, a atividade de IAA-oxidase pode ser aumentada pelo boro (Parish 1968).

Com relação à época de retirada das estacas da planta-mãe, Evans (1958), trabalhando com estacas de Coffeea arubica, obteve maior percentagem de enraizamento em estacas de ramos coletados em junho, que corresponde à época de chuvas no Quênia. Da mesma forma, Parushotham et al. (1984), trabalhando com estacas de Coffeea canephora, também verificaram ser a época das chuvas a melhor para a coleta dos ramos.

O objetivo deste trabalho foi verificar a ação de auxinas e/ou boro sobre o enraizamento de estacas e a influência da época de coleta dos ramos destinados à confecção das estacas na formação de raízes.

MATERIAIS E MÉTODOS

Foram utilizadas estacas de ramos ortotrópicos semi-lenhosos de café (Coffeea arubica L. cv. Mundo Novo), contendo dois nós e duas folhas, com aproximadamente 10 cm de comprimento. Essas estacas foram tratadas durante 24 horas com soluções aquosas contendo IBA e/ou NAA na concentração de 100 e 200 ppm (Weaver 1982), misturadas ou não com ácido bórico a 150 microgramas/ml (Jarvis et al. 1984). As combinações entre auxinas e/ou boro resultaram os seguintes tratamentos:

- T1 (H₂O)
- T2 (IBA 100 ppm)
- T3 (IBA 200 ppm)
- T4 (IBA 100 ppm + B)
- T5 (IBA 200 ppm + B)
- T6 (NAA 100 ppm)
- T7 (NAA 200 ppm)
- T8 (NAA 100 ppm + B)
- T9 (NAA 200 ppm + B)
- T10 (IBA 100 ppm + NAA 100 ppm)
- T11 (IBA 200 ppm + NAA 200 ppm)
- T12 (IBA 100 ppm + NAA 100 ppm + B)
- T13 (IBA 200 ppm + NAA 200 ppm + B)
- T14 (Boro)

Após o tratamento, as estacas foram plantadas em bandejas de enraizamento com vermiculita pura, e colocadas em câmara de nebulização, durante 90 dias. Em seguida, foram analisadas as seguintes características: número total de raízes formadas por tratamento, número médio de raízes/estaca e comprimento das raízes formadas. Além disso, para o estudo da época de coleta dos ramos, foram montados experimentos nas 4 estações do ano. Esses experimentos foram montados num esquema inteiramente casualizado, totalizando 16 estacas distribuídas em 4 repetições.

RESULTADOS E DISCUSSÃO

Número total de raízes formadas

Na Tabela 1, referente ao número total de raízes formadas por tratamento, verifica-se que T8 e T13 foram os tratamentos mais eficientes com estacas coletadas no verão. Já com estacas coletadas no outono, os tratamentos que apresentaram maior número total de raízes foram T7. T11 e T13. Os tratamentos T9 e T13 foram os que resultaram em maior número total de raízes nas estacas coletadas durante o inverno. Em estacas de ramos coletados na primavera, o tratamento 8 foi o que apresentou o maior número total de raízes.

Independentemente da época de coleta dos ramos, os tratamentos T8 e, principalmente, T13 foram os mais efetivos na formação de raízes. Os tratamentos com boro mostraram melhores resultados quanto ao número de raízes formadas. Em 1978, Middleton et al., trabalhando com Phaseolus aureus Roxb., verificaram que estacas sem o tratamento com boro e auxinas não mostraram alta formação de raízes. No entanto, tratamentos com auxinas mais boro apresentaram alto
TABELA 1. Resultados de número total de raízes formadas em estacas de café (Coffee arabica L. cv. 'Mundo Novo'), coletados no verão, outono, inverno e primavera (UNESP, Botucatu, SP, 1988).

<table>
<thead>
<tr>
<th>Trat.</th>
<th>N° total de raízes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Verão</td>
</tr>
<tr>
<td>T1</td>
<td>1</td>
</tr>
<tr>
<td>T2</td>
<td>4</td>
</tr>
<tr>
<td>T3</td>
<td>1</td>
</tr>
<tr>
<td>T4</td>
<td>11</td>
</tr>
<tr>
<td>T5</td>
<td>22</td>
</tr>
<tr>
<td>T6</td>
<td>23</td>
</tr>
<tr>
<td>T7</td>
<td>34</td>
</tr>
<tr>
<td>T8</td>
<td>52</td>
</tr>
<tr>
<td>T9</td>
<td>36</td>
</tr>
<tr>
<td>T10</td>
<td>21</td>
</tr>
<tr>
<td>T11</td>
<td>10</td>
</tr>
<tr>
<td>T12</td>
<td>31</td>
</tr>
<tr>
<td>T13</td>
<td>40</td>
</tr>
<tr>
<td>T14</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>303</td>
</tr>
</tbody>
</table>

Número médio de raízes/estaca

Pela Tabela 2, referente ao número médio de raízes/estaca, verificou-se que em estacas de ramos coletados no verão, outono, inverno e primavera, os tratamentos que apresentaram maior número médio de raízes/estaca foram, respectivamente, T10, T8, T13 e T4. Observou-se ainda que os valores dos tratamentos com NAA, são geralmente maiores que dos tratamentos com IBA, o que é confirmado pelo fato de os tratamentos T8 e T13 terem sido os mais efetivos na formação de raízes, independentemente da época de coleta dos ramos.

Lee et al. (1978), trabalhando com estacas de hipocótilo de Phaseolus aureus, compararam o efeito de tratamentos com IBA, NAA e 2,4-D sobre a formação de raízes nas estacas. Verificaram que o NAA foi o mais efetivo, seguido do IBA, 2,4-D e, por último, o IAA, confirmando assim, os resultados obtidos no presente trabalho.

Misra & Jauhari (1970), em estacas de Morus alba L., verificaram maiores número de raízes naquelas tratadas com IBA a 200 ppm mais boro à

TABELA 2. Resultados do número médio de raízes/estaca, formadas em estacas de café (Coffee arabica L. cv. 'Mundo Novo'), coletadas no verão, outono, inverno e primavera (UNESP, Botucatu, SP, 1988).

<table>
<thead>
<tr>
<th>Trat.</th>
<th>N° médio de raízes/estaca</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Verão</td>
</tr>
<tr>
<td>T1</td>
<td>1.0</td>
</tr>
<tr>
<td>T2</td>
<td>2.0</td>
</tr>
<tr>
<td>T3</td>
<td>1.0</td>
</tr>
<tr>
<td>T4</td>
<td>2.2</td>
</tr>
<tr>
<td>T5</td>
<td>2.4</td>
</tr>
<tr>
<td>T6</td>
<td>3.8</td>
</tr>
<tr>
<td>T7</td>
<td>5.7</td>
</tr>
<tr>
<td>T8</td>
<td>5.8</td>
</tr>
<tr>
<td>T9</td>
<td>4.0</td>
</tr>
<tr>
<td>T10</td>
<td>7.0</td>
</tr>
<tr>
<td>T11</td>
<td>3.3</td>
</tr>
<tr>
<td>T12</td>
<td>3.4</td>
</tr>
<tr>
<td>T13</td>
<td>5.0</td>
</tr>
<tr>
<td>T14</td>
<td>5.7</td>
</tr>
<tr>
<td>Total</td>
<td>52.3</td>
</tr>
</tbody>
</table>

número de raízes. Esse fato foi observado no presente trabalho com estacas caulinares de café.

A época da coleta dos ramos que propiciou maior número total de raízes nas estacas foi o inverno (julho), apesar da pequena precipitação ocorrida nesse mês (17,8 mm). Possivelmente, tal ocorrência deva-se ao fato de que as poucas estacas que enraizaram no inverno, apresentaram maior número de raízes por segmento caulinar.

No presente trabalho, verificou-se que o NAA foi mais efetivo que o IBA, neste parâmetro, enquanto a mistura de IBA com NAA não mostrou ser mais efetiva que cada um em separado.

Com relação a este parâmetro, também é certo que a melhor época, a em que ocorreu maior número total de raízes, foi inverno (junho). Este resultado contradiz o encontrado por Purushotham et al. (1984) em estacas de Coffea canephora, os quais afirmaram ser a melhor época de enraizamento a em que ocorre maior precipitação. No caso deste trabalho, junho apresentou uma baixa taxa de precipitação.

Comprimento médio das raízes

A Tabela 3 contém os dados relativos ao comprimento das raízes. Observa-se que, com estacas de ramos coletados no verão, os tratamentos T12 e T13 foram os mais efetivos em relação a este parâmetro. Já nas estacas coletadas no outono, T9 e T12 foram os tratamentos que apresentaram maior comprimento das raízes. Os tratamentos T8 e T13, foram os que mostraram maior comprimento das raízes nas estacas de ramos coletados durante o período de inverno. Nas estacas de ramos coletados na primeira, o tratamento mais efetivo no crescimento das raízes foi T5.

Dessa forma, o tratamento T13, com auxinas e foro, foi o mais efetivo no crescimento das raízes, proporcionando maior comprimento das mesmas. Não houve diferença visível entre tratamentos com IBA ou NAA, nas duas concentrações, e combinações destes com ácido bórico, exceto os já citados acima.

Com relação à influência da época de coleta dos ramos sobre o comprimento médio das raízes, verão (janeiro) e outono (março) foram as épocas que apresentaram melhores resultados, coincidindo com o período de maior precipitação pluvial do ano. Este resultado concorda com os obtidos por Purushotham et al. (1984), em estacas de Coffea canephora.

CONCLUSÃO

Em todos os parâmetros estudados, os tratamentos T8 (NAA 100 ppm + B) foi o que apresentou resultados satisfatórios nas três observações. Portanto, com o uso de NAA 100 ppm + B obtém-se um melhor enraizamento de estacas de café (Coffea arabica L. cv. 'Mundo Novo').

REFERÊNCIAS

ENRAIZAMENTO DE ESTACAS DE CAFÉ

