ÍNDICE DE EROSIVIDADE (EI_{30}) PARA LAGES (SC) - 1ª APROXIMAÇÃO

ILDEGARDIS BERTOL

RESUMO - O objetivo desta pesquisa foi determinar a erosividade das chuvas em Lages (SC) e sua distribuição anual, relacionando-a com a precipitação. O estudo foi realizado no Centro de Ciências Agroveterinárias, em Lages, em 1990. Para o cálculo da erosividade usou-se o método proposto por Wischmeier, modificado por Cabeda. O coeficiente de chuva (Rc) foi obtido conforme proposto por Fournier, modificado por Lombardi Neto, e as relações foram feitas através de regressão linear. Os dados indicaram que o índice de erosividade médio anual (EI_{a}) é de 5694 Mj mm/ha.h.ano. No período de outubro a fevereiro o EI_{30} total anual foi de 56%, destacando-se fevereiro, com 16%. As equações encontradas foram: EI_{30} = 0,06P + 110,46 (r = 0,58^**) e EI_{30} = 0,01Rc + 6,93 (r = 0,61^**), respectivamente, para precipitação (P) e coeficiente de chuva (Rc).

Termos para indexação: energia cinética, coeficiente de chuva.

EROSIVITY INDEX (EI_{30}) FOR LAGES (SC)

ABSTRACT - This work was done at the Centro de Ciências Agroveterinárias, in Lages, SC, Brazil, with the objective of determining the rainfall erosivity, its annual distribution and its relation with the precipitation. For the rainfall erosivity calculation the method proposed by Wischmeier modified by Cabeda was used. The rainfall coefficient (Rc), as proposed by Fournier, modified by Lombardi Neto, and the relations were made by the linear regression. The results showed mean annual erosivity index (EI_{30}) equal to 5694 MJ.mm/ha.h.year. During the October-February period, the annual total EI_{30} was 56% with special notability for February, with 16%. The equations determined were: EI_{30} = 0,06P + 110,46 (r = 0,58) and EI_{30} = 0,01Rc + 6,93 (r = 0,61), respectively for precipitation (P) and rainfall coefficient (Rc).

Index terms: kinetic energy, rainfall coefficient.

INTRODUÇÃO

O índice de erosividade das chuvas expressa seu potencial erosivo em relação à erodibilidade dos solos (Wischmeier 1959). Assim, a adequação e economicidade do planejamento com vistas à conservação do solo deve levar em conta, além das características edafoclimáticas do solo, o índice de erosividade médio mensal ao longo do ano em determinado local.

As características da chuva que afetam a erosividade são volume total, duração e intensidade. No entanto, é muito fraca a correlação de cada um destes fatores isoladamente, com as perdas de solo (Wischmeier & Smith 1958). Os referidos autores encontraram que para as regiões de clima temperado, a melhor variável simples para avaliar a erosão é o produto da energia cinética (E) e sua intensidade máxima em 30 minutos (I30), o que se expressa como índice EI_{30}. Contudo, para regiões de clima tropical e subtropical, a relação empírica obtida por Wischmeier & Smith (1958) subestima a energia cinética das chuvas, e, consequentemente, sua erosividade (Lal 1976).

Alguns estudos têm demonstrado preliminarmente que o índice EI_{30} não se correlaciona com as perdas de solo no Brasil (Morais et al. 1988 e Dedecek 1988). Outros trabalhos, no entanto, têm

1 Aceito para publicação em 26 de outubro de 1992. Trabalho desenvolvido com recursos parciais do CNPq.
apresentado melhor correlação nas perdas de solo com o EI_30 do que com outros índices (Carvalho et al. 1989). Isto justifica a obtenção do índice EI_30 para cada região fisiográfica de clima caracteristicamente diferente do de outra região. Assim, o planejamento conservacionista poderá ser executado com maior precisão e economicidade.

A presente pesquisa foi conduzida com o objetivo de determinar o índice de erosividade (EI_30) no município de Lages (SC) e sua distribuição anual, bem como identificar os períodos críticos nos quais deve aumentar a preocupação com a proteção do solo contra a erosividade. Objetivou-se, ainda, determinar a relação entre a erosividade e a precipitação pluvial.

MATERIAL E MÉTODOS

A pesquisa foi conduzida no Centro de Ciências Agroveterinárias (CAV) de Lages (SC).

Utilizaram-se dados de precipitação registrados em pluviogramas diários modelo III-01-01. A amplitude do registro é de 10 mm de precipitação, com unidade de 0,1 mm. O tempo de registro é de 24 horas, com unidade de 10 minutos. Os dados foram obtidos nas Estações Agrometeorológicas da Empresa Catarinense de Pesquisa Agropecuária (EMPASC) e Centro de Ciências Agroveterinárias (CAV) de Lages (SC), no período contínuo de 1981 a 1990. As unidades de pesquisa estão situadas a 27°49' latitude sul e 50°20' longitude oeste. A altitude média é de 953 metros, temperatura máxima média anual 32°C e mínima média anual 10°C(-). Segundo Köppen, o clima da região é do tipo Cfb.

Após terem sido cotadas as chuvas manualmente em segmentos de intensidade uniforme, com auxílio de computador calculou-se sua energia cinética pela metodologia de Wischmeier & Smith (1958). Utilizou-se a equação sugerida por Foster et al. (1981), que converte os dados para o sistema Internacional de Unidades:

\[E = 0,119 + 0,0873 \log I \]

onde:

- \(E \) = energia cinética por mm de chuva, em Mj/ha.mm;
- \(I \) = intensidade de chuva, em mm/h.

O índice EI_30, obtido em MJ.mm/ha.h.mês, foi calculado empregando-se a relação:

\[EI_{30} = E \times 130 \]

onde:

\(I_{30} \) = intensidade máxima da chuva em 30 minutos, determinada no pluviograma.

Pelo somatório dos valores do índice EI_30 em cada mês, obteve-se o índice mensal, e, somando-se os valores mensais, o índice anual. A erosividade média anual foi obtida por um período de 10 anos contínuos, o qual é representativo para expressar a erosividade das chuvas de determinado local (Wischmeier 1976).

Foi determinado o coeficiente de chuva, conforme proposto por Fournier (1956) e modificado por Lombardi Neto (1977):

\[Rc = p^2/P \]

onde:

- \(Rc \) = coeficiente de chuva (mm);
- \(p \) = precipitação média mensal (mm);
- \(P \) = precipitação média anual (mm).

Foram obtidas, ainda, para o período estudado, correlações simples entre a precipitação média mensal e cada um dos índices médios mensais.

RESULTADOS E DISCUSSÃO

Os valores anuais do índice de erosividade EI30 apresentaram variações, porém com baixo coeficiente de variação tratando-se de dados meteorológicos, evidenciando pequena dispersão de dados (Tabela 1). Os coeficientes de variação dos valores médios mensais foram mais elevados, especialmente de fevereiro, julho e agosto. O índice EI_30 médio determinado para Lages foi de 5694 Mj.mm/ha.h.mês, assemelhando-se ao encontrado por Carvalho et al. (1989) para Mococa (SP), e diferindo muito dos de Oliveira Junior & Medina (1990) para Manaus (AM) e Oliveira Junior (1988) para Bragança e Marabá (PA). Encontra-se ainda na Tabela 1, os valores mensais e médios do índice de erosividade.

Observa-se, na Tabela 2, que foi muito boa a distribuição média mensal das precipitações durante o período de estudo. As precipitações apresentaram maior poder erosivo nos meses de outubro-fevereiro. Nos referidos meses ocorreram erosividades muito altas, superiores a 500 Mj. mm/ha.h.mês. Assim, pode-se esperar elevada.

<table>
<thead>
<tr>
<th>Ano</th>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>1003</td>
<td>3773</td>
<td>104</td>
<td>272</td>
<td>0</td>
<td>97</td>
<td>77</td>
<td>98</td>
<td>221</td>
<td>324</td>
<td>46</td>
<td>731</td>
<td>6746</td>
</tr>
<tr>
<td>1982</td>
<td>67</td>
<td>1372</td>
<td>255</td>
<td>18</td>
<td>57</td>
<td>700</td>
<td>163</td>
<td>171</td>
<td>113</td>
<td>1382</td>
<td>1588</td>
<td>810</td>
<td>6696</td>
</tr>
<tr>
<td>1983</td>
<td>295</td>
<td>952</td>
<td>177</td>
<td>366</td>
<td>1124</td>
<td>337</td>
<td>1675</td>
<td>972</td>
<td>459</td>
<td>296</td>
<td>569</td>
<td>839</td>
<td>8061</td>
</tr>
<tr>
<td>1984</td>
<td>352</td>
<td>1521</td>
<td>494</td>
<td>266</td>
<td>126</td>
<td>454</td>
<td>598</td>
<td>821</td>
<td>203</td>
<td>273</td>
<td>366</td>
<td>784</td>
<td>6258</td>
</tr>
<tr>
<td>1985</td>
<td>126</td>
<td>540</td>
<td>1210</td>
<td>416</td>
<td>103</td>
<td>59</td>
<td>81</td>
<td>60</td>
<td>200</td>
<td>559</td>
<td>294</td>
<td>222</td>
<td>3870</td>
</tr>
<tr>
<td>1986</td>
<td>956</td>
<td>261</td>
<td>41</td>
<td>503</td>
<td>406</td>
<td>35</td>
<td>57</td>
<td>186</td>
<td>217</td>
<td>176</td>
<td>1011</td>
<td>329</td>
<td>4178</td>
</tr>
<tr>
<td>1987</td>
<td>566</td>
<td>85</td>
<td>24</td>
<td>720</td>
<td>1118</td>
<td>87</td>
<td>282</td>
<td>100</td>
<td>193</td>
<td>509</td>
<td>195</td>
<td>284</td>
<td>4163</td>
</tr>
<tr>
<td>1988</td>
<td>528</td>
<td>174</td>
<td>363</td>
<td>585</td>
<td>266</td>
<td>146</td>
<td>22</td>
<td>0</td>
<td>849</td>
<td>240</td>
<td>228</td>
<td>1171</td>
<td>4572</td>
</tr>
<tr>
<td>1989</td>
<td>1002</td>
<td>139</td>
<td>405</td>
<td>627</td>
<td>593</td>
<td>25</td>
<td>31</td>
<td>520</td>
<td>979</td>
<td>228</td>
<td>63</td>
<td>194</td>
<td>4806</td>
</tr>
<tr>
<td>1990</td>
<td>502</td>
<td>511</td>
<td>734</td>
<td>324</td>
<td>527</td>
<td>275</td>
<td>283</td>
<td>37</td>
<td>767</td>
<td>1226</td>
<td>1828</td>
<td>577</td>
<td>7591</td>
</tr>
<tr>
<td>Média</td>
<td>540</td>
<td>933</td>
<td>381</td>
<td>410</td>
<td>432</td>
<td>221</td>
<td>327</td>
<td>296</td>
<td>420</td>
<td>521</td>
<td>619</td>
<td>594</td>
<td>5694</td>
</tr>
<tr>
<td>D.P.</td>
<td>331</td>
<td>1064</td>
<td>347</td>
<td>196</td>
<td>393</td>
<td>209</td>
<td>479</td>
<td>331</td>
<td>307</td>
<td>409</td>
<td>608</td>
<td>310</td>
<td>1471</td>
</tr>
<tr>
<td>C.V.</td>
<td>61</td>
<td>114</td>
<td>91</td>
<td>48</td>
<td>91</td>
<td>95</td>
<td>146</td>
<td>73</td>
<td>79</td>
<td>98</td>
<td>52</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>E.P.M.</td>
<td>105</td>
<td>336</td>
<td>110</td>
<td>62</td>
<td>124</td>
<td>66</td>
<td>151</td>
<td>105</td>
<td>97</td>
<td>129</td>
<td>192</td>
<td>98</td>
<td>465</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mês</th>
<th>Precipitação</th>
<th>E130</th>
<th>Coef. chuva (Re)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Janeiro</td>
<td>151</td>
<td>9,0</td>
<td>540</td>
</tr>
<tr>
<td>Fevereiro</td>
<td>167</td>
<td>10,0</td>
<td>933</td>
</tr>
<tr>
<td>Março</td>
<td>101</td>
<td>6,0</td>
<td>381</td>
</tr>
<tr>
<td>Abril</td>
<td>126</td>
<td>7,5</td>
<td>410</td>
</tr>
<tr>
<td>Maio</td>
<td>150</td>
<td>9,0</td>
<td>432</td>
</tr>
<tr>
<td>Junho</td>
<td>121</td>
<td>7,2</td>
<td>221</td>
</tr>
<tr>
<td>Julho</td>
<td>155</td>
<td>9,3</td>
<td>327</td>
</tr>
<tr>
<td>Agosto</td>
<td>120</td>
<td>7,2</td>
<td>296</td>
</tr>
<tr>
<td>Setembro</td>
<td>149</td>
<td>8,9</td>
<td>420</td>
</tr>
<tr>
<td>Outubro</td>
<td>156</td>
<td>9,3</td>
<td>521</td>
</tr>
<tr>
<td>Novembro</td>
<td>152</td>
<td>9,1</td>
<td>619</td>
</tr>
<tr>
<td>Dezembro</td>
<td>126</td>
<td>7,5</td>
<td>594</td>
</tr>
</tbody>
</table>

Total 1674 100,0 5694 100,0 142,1 100,0

* = MJ.mm.ha⁻¹.h⁻¹.ano⁻¹.

Erosão no período de outubro-fevereiro, se o solo estiver exposto à ação erosiva das chuvas, através da energia de impacto e escoamento superficial. Os valores do coeficiente de chuva (Rc) apresentaram distribuição média mensal diversa dos do índice E130. Os maiores valores ocorreram em fevereiro, julho e outubro, e o menor, em março (Tabela 2). Isto pode ser parcialmente explicado. Enquanto o I30 é diretamente influenciado pela intensidade das chuvas (especialmente a intensidade máxima em 30 minutos), o coeficiente Rc reflete apenas a relação entre volumes totais de chuvas mensal e anual. Assim, os meses com chuvas mais intensas tendem a apresentar maiores E130, enquanto os com maiores relações entre precipitação média mensal e precipitação média anual tendem a apresentar maiores coeficientes Rc.

Tanto o volume quanto o número de precipitações apresentaram variações mensais (Tabela 3). No entanto, o coeficiente de variação foi baixo, especialmente o do número de chuvas. Em relação ao total das chuvas estudadas, 39% do número e 83% do volume foram erosivas.

Outubro-fevereiro, com 56,3% da erosividade total do período, caracterizou-se como a época do ano de maior erosividade, com maior risco de erosão hídrica (Fig. 1). Este problema acentua-se sobretudo porque nesse período é preparado o solo e são semeadas as culturas de verão na região, o que deixa o solo susceptível à alta erosividade das chuvas. O período restante do ano, março-setembro, com 43,7% da erosividade, apresenta menor risco a erosão. Desse modo, através da Fig. 1 podemos distinguir duas épocas quanto à distribuição da erosividade.

Na Fig. 2, observa-se que a erosividade média mensal, de modo geral, aumentou de acordo com a precipitação. Nos meses de novembro-março a erosividade ultrapassou a precipitação. Isto indica que as chuvas nesses meses foram mais erosivas, o que concorda com Cogo et al. (1978). Nos demais meses, os valores da erosividade ficaram abaixo da precipitação, o que indica que a inten-

<table>
<thead>
<tr>
<th>Ano</th>
<th>Volume de chuvas</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Número de chuvas</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Erosivas</td>
<td>%</td>
<td></td>
<td>Total</td>
<td>Erosivas</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>1302</td>
<td>1079</td>
<td>83</td>
<td></td>
<td>124</td>
<td>44</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>1737</td>
<td>1517</td>
<td>87</td>
<td></td>
<td>123</td>
<td>55</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>2500</td>
<td>2276</td>
<td>91</td>
<td></td>
<td>134</td>
<td>61</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>1916</td>
<td>1442</td>
<td>75</td>
<td></td>
<td>134</td>
<td>45</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>1147</td>
<td>900</td>
<td>78</td>
<td></td>
<td>123</td>
<td>39</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>1318</td>
<td>1059</td>
<td>80</td>
<td></td>
<td>113</td>
<td>43</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td>1503</td>
<td>1193</td>
<td>79</td>
<td></td>
<td>133</td>
<td>48</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>1594</td>
<td>1367</td>
<td>86</td>
<td></td>
<td>110</td>
<td>39</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>1565</td>
<td>1217</td>
<td>78</td>
<td></td>
<td>116</td>
<td>44</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>2135</td>
<td>1759</td>
<td>82</td>
<td></td>
<td>128</td>
<td>62</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>16717</td>
<td>13809</td>
<td></td>
<td>1238</td>
<td>480</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Média | 1671,7 | 1380,9 | 83 | | 123,8 | 48,0 | 39 |

A obtenção do índice de erosividade \(E_{30} \) envolve cálculos demorados e cansativos com a utilização de pluviogramas. Em função disso, é válido o esforço no sentido de obter o índice de erosividade por métodos menos trabalhosos. Com este objetivo, correlacionaram-se os valores médios mensais do índice de erosividade com a precipitação e coeficiente de chuva, utilizando-se para isso apenas dados pluviométricos. As equações de regressão obtidas foram: \(E_{30} = 0,06P + 110,46 \) (r = 0,58) para precipitação e \(E_{30} = 0,01Rc + 6,93 \) (r = 0,61) para coeficiente \(Rc \). Os coeficientes de correlação foram baixos, não significativos. Isto ocorreu provavelmente devido à grande dispersão dos dados mensais de \(E_{30} \) comparados à menor dispersão da precipitação média mensal (Tabela 2). Isto é normal para nossas condições, já que os meses com chuvas de alta intensidade média produzem elevados \(E_{30} \), não apresentando necessariamente elevadas precipitações médias mensais correspondentes. Isto tendeu a produzir um baixo coeficiente de correlação, tanto entre \(E_{30} \) e precipitação, quanto entre \(E_{30} \) e \(Rc \), pois o \(Rc \) é dependente unicamente da relação entre precipitações totais médias mensal e anual. Isto indica que para Lages, com os dados utilizados no presente trabalho, ainda não é possível recomendar este método para obtenção do \(E_{30} \). Sugere-se a continuidade desse estudo futuramente, com maior número de dados, objetivando melhorar a correlação aqui apresentada.

CONCLUSÕES

1. A erosividade média anual das chuvas do município de Lages (SC) foi de 5.694 Mj.mm/ha.h.ano.
2. Outubro a fevereiro foi o período crítico com 56,3% da erosividade anual; fevereiro foi o mês mais crítico com 16,4% do índice total.
3. Em relação ao total das chuvas estudadas, 83% do volume e 39% do número foram erosivas.
4. As equações de regressão linear, com coeficientes de correlação não-significativos, para estimar a erosividade da chuva a partir da precipitação e do coeficiente de chuva (\(Rc \)) são: \(E_{30} = 0,06P + 110,46 \) (r = 0,58) e \(E_{30} = 0,01Rc + 6,93 \) (r = 0,61), respectivamente.

AGRADECIMENTOS

À EMPASC e 8 DISME, pelas facilidades na obtenção de parte dos pluviogramas diários; aos acadêmicos Énio S.V. de Jesus, Valter A. Beccegatto, Bernardo S. Brow, Ariberto L. Cellu, Maurício D. Luca, Luiz C. Cavalli e Vamilon P. da Silva Jr., pela cotagem de pluviogramas e computação dos dados, e ao Professor Loris Luiz Daros pela valiosa ajuda na idealização do Programa de computador.

REFERÊNCIAS

