IMPACT OF THE RELEASE OF ENTOMOPATHOGENS IN THE ENVIRONMENT"

JAMES R. FUXAZ?

ABSTRACT - The environmental impact of entomopathogens depends on two factors: the
fate of the pathogen after its release, and the effects of the pathogen on various components
of the environment. Three factors affect the fate of a released entomopathogen: its
persistence, population growth, and dispersal. Environmental fate after release varies with
the pathogen species and environmental factors. Data concerning environmental effects after
release are scanty but somewhat similar for viruses, bacteria and fungi. The major
demonstrated effects are the increase in numbérs of pathogen units in the environment and
decrease in host-insect pumbers and damage to crop plants. Viruses and bacteria have been
demonstrated to harm invertebrate parasitoid and predator populations, primarily by
reducing their common resource, the host insect population. However, they rarely have as
severe an effect as chemical insecticides. The potential environmental impact of
recombinant-DNA entompathogens has become a primary consideration in their release for
microbial control. There are three major concerns about releasing such organisms: they might
have unexpected, deleterions properties after release; they could cause ecological disruptions
as have other biological introductions; and they could transfer genetic material to other
organisms, causing the first two areas of concern to resurface. Overall, R-DNA organisms
are perceived as having a low probability- of causing environmental harm but potentially
severe consequences if harm occurs.

Index terms: environmental impact, microbial control, biopesticides, recombinant-DNA,
entomopathogens.

IMPACTO DA LIBERACAO DE ENTOMOPATOGENOS NO AMBIENTE

RESUMO - O impacto dos entomopatégenos sobre o ambiente depende de dois fatores: o
destino do patégeno depois da sua liberagio ¢ os efeitos do patégeno sobre os virios compo-
nentes do meio. Trés sdo os fatores que afetam o destino do entomopatégenc liberado: a sua
persisténcia, crescimento populacional e dispersdo. O destino no meio ambiente depois da li-
beragio varia de acordo com a espécie do patégeno ¢ com fatores ambientais. Dados referen-
tes aos efeitos sobre 0 meio ambiente sdo escassos, mas sdo semelhantes para virus, bactérias
¢ fungos. Os maiores efeitos demonstrados sfio o aumento em niimero dos patégenos no meio,
a diminuigio dos insetos-hospedeiros ¢ diminuigo de danos nas plantas cultivadas, Foi de-
monstrado que os virus e bactérias danificam os grupos de parasit6ides e de predadores prin-
cipalmente ao diminuirem a sua fonte comum, a populagio dos insetos-hospedeiros. Contudo,
eles raramente provocam efeitos tio fortes quanto os inseticidas quimicos. O impacto poten-
cial de entomopat6genos DNA -Recombinantes sobre o meio tornou-se uma consideragao
primordial na sua liberagio para controle microbiano. H4 trés aspectos importantes sobre a
liberagdo desses organismos: apés a liberagio eles podem provocar rupturas ecolégicas e ou-
tras introdugdes biol6gicas; e podem transferir material genético para outros organismos, le-
vando ao ressurgimento dos dois primeiros aspectos. Finalmente, organismos R-DNA tém
poucas probabilidades de causarem danos ao meio, mas podem levar a conseqiiéncias severas
se isto acontecer.

Termos para indexagdo: impacto sobre o meio ambiente, controle microbiano, biopesticidas,
DNA -recombinante, entomopatdgenos.
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INTRODUCTION

The environmental impact of releases of
entomopathogens has been an area of research
interest for at least 20 years, and its
importance has not diminished. The reason for
the current interest is that risk assessment of
imminent releases of genetically engineered
entomopathogens requires knowledge of
previous impacts of the parental organisms.
Also, for various reasons, risk, assessment of
genetically engineered microorganisms has
raised new environmental concerns about
releasing natural strains of entomopathogens
(Fuxa 1990). Entomopathogens have had only
relatively minor environmental impacts in the
past (Fuxa 1989, Laird et al. 1990), and their
relative safety has become the primary
rationale for their development and usage in
developed nations. However, increased
concerns about environmental effects and food
safety of pesticides in these nations has
assured that environmental releases of all
agents, whether biological or chemical, will be
intensively scrutinized.

Environmental impact of a biological
release depends on two factors, the fate of the
organism and its effect on various components
of the environment. Fate is an important
consideration because the release of a harmful
agent can be acceptable if that agent does not
persist or spread in the environment. Thus, the
public in developed nations was not overly
concerned about harmful effects of chemical
pesticides as long as it was thought that these
effects were largely confined, for example, to
the top few centimeters of soil in an
agricultural field. However, if these same
chemicals can contaminate groundwater that
supplies drinking water, then the potential
impact and public perception change. Since
there is some concern about the environmental
effects of  biological releases, the
environmental fate of entomopathogens is
critical to their development for biological
control because they are living, replicating
agenits.
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There will be three purposes to the current
paper. The first will be to review the fate of
previous releases of natural strains of
entomopathogens. The second will be to
review environmental effects of such releases.
These  reviews will include the
entomopathogenic bacteria, viruses, and fungi,
the three groups for which releases of
recombinant-DNA organisms is the most
likely in the near future. The third purpose
will be to evaluate the concerns about
releasing genetically engineered
entomopathogens.

FATE OF ENVIRONMENTAL
RELEASES

The environmental fate of a biological
release or introduction depends on three
factors: the organism’s persistence, dispersal,
and population growth. The environmental
fate of released entomopathogens has varied
with the pathogen species and environmental
factors. Environmental fate determines how
widespread and persistent will be the effects,
whether positive or negative, of a biological
release.

Persistence of released entomopathogens

Persistence of entomopathogens in the
environment has been the subject of far more
research than the other two components that
determine an organism’s fate after release.
Generally, persistence has been greater in host
populations or soil than on vegetative
surfaces.

Viruses - Virtually all the research of viral
persistence has concerned the baculoviruses;
the long-term persistence of viruses is
primarily in soil and in primary, secondary,
and alternative hosts.

There is little doubt that the soil reservoir
contributes to long-term persistence of
baculoviruses. Nuclear polyhedrosis viruses
(NPVs) of Lymantria dispar and Orgyia
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pseudotsugata in forests persisted at least one
year in soil after release (Podgwaite et al.
1979, Thompson & Scott 1979). Evaluations
of persistence in soil after release in row crops
indicated that these NPVs persist at least over
winter or one year; examples include the
NPVs of Heliothis armigera, Mamestra
brassicae, Pseudoplusia  includens, and
Trichoplusia ni (Thomas et al. 1972, Roome
& Daoust 1976, Young & Yearian 1979,
Evans 1982). NPVs have been detected in soil
up to 2-5 years after release for control of P.
includens and T. ni, though in at least one
case this was assisted by recycling of the virus
in the insect population (Jaques 1967, 1969,
McLeod et al. 1982). A Pieris brassicae
granulosis virus (GV) persisted 2 years in soil
(David & Gardiner 1967), and a Pieris rapae
GV had a half-life in soil of 8-9 weeks after
release (Payne 1982).

The host insect population is the other
reservoir in which insect viruses have
persisted for long time periods after release,
though there also are examples of lack of
persistence in this fashion. The NPVs of
Chovristonewra fumiferana and Neodiprion
lecontii persisted 1-2 years in host populations
after their releases into forests (Morris ¢t al.
1974, deGroot et al. 1979). The Anticarsia
gemmatalis NPV  persisted in  the host
population for 3 years after one release in a
row crop but did not persist after another
(Beach et al. 1984, Richter & Fuxa 1984);
similarly, the Neodiprion sertifer NPV
persisted from year to year in host insects in
one case but did not persist in another (Bird
1961). The Adoxophyes orana GV persisted 3
months in host insects (Shiga et al. 1973). The
Oryctes monoccluded  baculovirus is well
known for its persistence. This virus persisted
in host populations 0-38 weeks at different
sites in one study with O. rhinoceros (Gorick
1980), and in other research it survived 17
months to 7 years in populations of O.
monoceros and O. rhinoceros, rtespectively
(Young & Longworth 1981, Lomer 1986).

Insect viruses survive only a matter of days
on vegetative surfaces. The GVs of
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Laspeyresia pomonella and P. rapae and the
NPVs of A. gemmatalis, Heliothis armigera,
Heliothis spp.. Neodiprion taedae linearis,
and 7. ni persisted over a range of 1-32 days
after release on foliage or fruit surfaces
(Jaques 1967, Igpoffo et al. 1972, 1974,
1976b, Young & Yearian 1974, 1986a,
Roome & Daoust 1976, Moscardi et al. 1981,
Tatchell & Payne 1984). The NPVs of M.
brassicae and T. ni persisted 80 days and 12
weeks, respectively, when the virus recycled
in the host population (Ignoffo et al. 1980,
Evans & Allaway 1983).

One study has examined the persistence of
NPV in bird feces, which is important to
biotic transport of these viruses. The NPV of
Gilpinia hercyniae survived passage through
bird guts for 3 days and was still viable in the
feces (Entwistle et al. 1978).

Bacteria - Bacterial persistence after
environmental release is similar to that of the
viruses in that the bacteria retain activity for
relatively long periods in soil or host
populations but not on vegetative surfaces.
Additionally, bacterial persistence in water
and air has received some attention from
researchers.

Entomopathogenic bacteria have persisted
for months or years in soil after various
releases. Bacillus thuringiensis has retained
viability in soil for periods ranging from 8
weeks to almost 3 years (Saleh et al. 1970,
West et al. 1984, Petras & Casida 1985,
Benz 1987). Also, Bacillus popilliae var.
melolonthae persisted 2 years (Hurpin &
Robert 1976), and Bacillus sphaericus, a
pathogen of mosquito larvae, was still viable
in soil of a roadside ditch 9 months after its
release (Hertlein et al. 1979). B. popilliae also
has been known to persist 45 years in soil,
though this included recycling in host insect
populations (Hutton & Burbutis 1974).

Virtually all the research of persistence of
entomopathogenic  bacteria’ on vegetative
surfaces has involved B. thuringiensis. In both
trees and row crops, this bacterium has
remained viable 30 days or less on foliage
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(Smimoff et al. 1973, Ignoffo et al. 1974,
Morris 1977b, Frye et al. 1983, Sneh et al.
1983); the half-life generally has been
measured at less than 1 day, though it can be
as long as 2.5 - 8 days (Ignoffo et al. 1974,
Pinnock et al. 1975, 1978, Lynch et al. 1980,
Sorensen & Falcon 1980). The B.
thuringiensis 8-endotoxin and B-exotoxin have
retained activity for 20 and 12 days,
respectively. B. rhuringiensis has been known
to persist for 2 years on bark (Benz 1987),
perhaps due to the increased possibility of
being protected from sunlight in cracks and
crevices.

Bacterial persistence in water and air has
been studied with B. thuringiensis and B.
sphaericus. B. thuringiensis was detected by
spore count (i.e., viability was not determined)
up to 30 days after release into a river and for
17 days in the air after high-altitude spraying
(Smirnoff et al. 1973, Buckner et al. 1974).
Two mosquito pathogens, B. thuringiensis
var. israelensis and B. sphaericus, usually are
detected and remain viable in water for less
than 7 days (Mulligan et al. 1978, 1980),
though the latter has remained viable for at
least 28 days (Mulligan et al. 1980). However,
if B. sphaericus recycles in the host
population, then this bacterium can persist in
water for at least 20 - 60 days (DesRochers &
Garcia 1981, 1984).

Fungi - Most studies of fungal persistence
after release have been in row crops, though
there have been a few in other ecosystems. As
with the viruses and bacteria, long-term
persistence of entomopathogenic fungi has
been in soil or in host populations,

The fungi generally have persisted in soil
or leaf litter for 1 year or less, though
persistence of 1 - 2 years has been observed.
Beauveria bassiana has persisted in soil for at
least 15 days to at least 1 year after release
(Watt & LeBrun 1984, Miiller-Kégler &
Zimmerman 1986), and Metarhizium
anisopliae has remained viable at least 2 years
in compost heaps (Latch & Falloon 1976).
The other studies have been with Nomuraea
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rileyi; this fungis has remained viable in soil
in row crops for 93 - 450 days (Sprenkel &
Brooks 1977, Ignoffo et al. 1978a, Thorvilson
et al. 1985).

Several fungal species have persisted for
long periods in host populations. B. bassiana
and N. rileyi have persisted for 32 weeks and
105 days, respectively, in host cadavers
(Thorvilson et al. 1985, Daoust & Pereira
1986b). Persistence in living host populations
has been studied in a variety of ecosystems
and has ranged from 2 months to 22 years.
The fungal species included Coelomoriyces
indicus, Coelomomyces punctatus,
Coelomomyces stegomyiae, M. anisopliae,
and Myiophagus ucrainicus (Gad & Sadek
1968, Chapman 1974, Young 1974, Weiser
1982, Hinel & Watson 1983, Latch & Kain
1983, Laird 1985).

Though there are exceptions, the
entomopathogenic fungi persist on plant parts
only a few days. B. bassiana remained viable
5-21 days on plant surfaces (Gardner et al.
1977, Ignoffo et al. 1979, Daoust & Pereira
19862), though it was able to survive inside
corn stalks throughout a growing season
(Lewis & Cossentine 1986). M. anisopliae
survived 3 days on plant parts (Daocust and
Pereira 1986b), and N. rileyi conidia had a-
half-life of 2-10 days on vegetation (Ignoffo et
al. 1976a, Gardner et al. 1977). Triplosporium
fresenii survived over winter in an orchard
(Bitton et al. 1979).

There have been two studies of fungal
persistence in aquatic habitats. Lagenidium
giganteurn persisted at Jeast 96 days in
flooded woodland (Jaronski & Axtell 1983)
and 85 days in a rice field (Kerwin & Washino
1986). In both cases the fungus was recycling
in the host population.

Dispersal of released entomopathogens

Dispersal of an entomopathogen after
release is one of the most important factors in
a biological release and is a particular concern
in risk assessment of genetically engineered
microorganisms. The reason for this is that, if



IMPACT OF ENTOMOPATHOGENS IN THE ENVIRONMENT

dispersal of an organism can be predicted and
controlled, then that organism can be tested in
small field plots even if it is potentially
persistent and harmful. If it can be contained,
the harmful effects will be very localized, and
the organism can probably be destroyed
eventually.

Dispersal of entomopathogenic viruses has
been the subject of several studies, but
dispersal of the bacteria and fungi is only
poorly understood. The methods of transport
and dispersal of entomopathogenic viruses,
bacteria, and fungi have been reviewed
previously (Fuxa 1991). Dispersal of all three
groups is a major need for further work,

Viruses - As with persistence, virtually all
the research of dispersal of entomopathogenic
viruses has been with releases of
baculoviruses. The transport mechanisms in
these cases have not always been identified,
but in other cases these viruses have been
dispersed by infected host insects, parasitic or
predatory arthropods, birds, spray drift, or
wind-blown leaves or larvae.

Dispersal distances have been estimated for
a number of NPV releases. In row crops,
dispersal has ranged from the Heliothis zea
NPV being transported throughout a soybean
plant (Ignoffo et al. 1978b) to the same virus
being moved 240 m inh 45 days (Gard
1975). Other NPVs released in row crops have
dispersed intermediate distances: A,
gemmatalis NPV, 69 m in 1 year (Richter and
Fuxa 1984); H. zea NPV, 180 m (Smith et al.
1984); and M. brassicae NPV, 2.5 m (Evans
& Allaway 1983). Dispersal in forests has
been even more variable, The NPVs of C.
fumiferana and L. dispar did not spread after
release (Cunningham 1982), and dispersal of
Malacosoma disstria NPV and N. sertifer
NPV ranged from 0-32 km and 0-40 ha,
respectively ‘(Bird 1961, Stairs 1965). Other
releases in forests (NPVs of Diprion (=
Gilpinia) hercyniae, Hyphantria cunea, L.
dispar, Lymantria monacha, N. lecontii, and
N. sertifer) resulted in viral transport ranging
from 30-850 m or over 290 ha (Bird 1961,
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Hukuhara 1973, deGroot et al. 1979, Burges
1981¢, Cunningham & Entwistle 1981,
Cunningham 1982, Entwistle et al. 1983).
Birds have been estimated to have transported
NPVs 805 m (Burges 1981c) or up to 7
km/day (Entwistle et al. 1978). In one case
NPV transport through trees and open ground
was estimated at 1-188 m (Suzuki & Kunimi
1981).

There are fewer data regarding transport
distances for GVs and nonoccluded
baculoviruses. The dispersal of the A. orana
GV was estimated as “low”’ after release in an
orchard (Shiga et al. 1973). On the other
hand,” the Oryctes baculovirus is noted for its
dispersal. This virus has been estimated to
have a rate of spread of 1-3 km/month (Young
1974, Gorick 1980, Lomer 1986).

Bacteria - Dispersal of bacteria has seldom
been studied, perhaps because the best-known
entomopathogen, B. rhuringiensis, seems to
have little capability for spread in the
environment. Estimates of dispersal of this
bacterium include zero spread, 15 km due to
spray drift (Dulmage & Aizawa 1982), and
worldwide dispersal in grain due to human
trade (Burges & Hurst 1977). B. thuringiensis
var. israelensis has spread over areas of 3.4 -
7.3 ha or distances of 250 m due to water flow
(McLaughlin & Vidrine 1985, Finch et al.
1986, Gibbs et al. 1986). The only other
bacterium whose dispersal has been estimated
is B. popilliae. This bacterium has been
observed to spread into nearby pastures and
fields after its release (Klein 1981).

Fungi - Dispersal of entomopathogenic
fungi is a major unknown in the epizootiology
of insect diseases. The fungi have the
potential for long-range dispersal due to the
possibility that conidia or other spore-like
stages can be carried great distances by wind.
However, there have been few studies of
fungal dispersal and almost no studies of wind
as a transport mechanism - for
entomopathogenic fungi.

Perhaps the most accurate estimates of
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fungal spread have been in studies in which
the transport mechanism involved insect hosts
or spray drift. Insect hosts have transported N.
rileyi throughout a soybean plant (Ignoffo et
al. 1977), M. anisopline up to 300-400 m
(Latch & Falloon 1976), and Massospora
cicadina at least 132 m (Lloyd et al. 1982),
though the latter did not involve a release.
Other studies have included more general
observations. Aschersonia spp. did not spread
“readily’’ in citrus (Burges & Hussey 1971b);
Entomophthoraceae did not spread in adverse
conditions (Wilding 1981); Hirsutella
thompsonii did spread to untreated areas
(McCoy & Selhime 1977); N. rileyi did not
spread to untreated plots at a distance of 700
ft in one study (Ignoffo et al. 1976a} but might
have spread over 0.8 ha in another (Fuxa
1984); and Verticillium lecanii spread to
adjacent plots (Hall 1980). In an aquatic
study, L. gigantewm spread throughout 800 m?
due to water current (Jaronski & Axtell 1983).,

Population growth of released

entomopathogens

Population growth or decline of a released
entomopathogen is heavily interdependent
with persistence and dispersal and certainly is
important to risk assessment. For example, if a
pathogen population persists and grows after a
release, it almost certainly will be transported
outside the release site, even if only at a slow
rate or over short distances. Population growth
has been included in only a few studies of
entomopathogen releases.

Viruses - Viruses have received the most
research attention among entomopathogens as
far as population growth after release is
concerned. There probably have been a large
number of releases in which the virus did not
persist in the environment, and in which viral
population density was not estimated or
reported.,

Increases as well as decreases in viral
population density have been observed after
releases in row crops and forests. Viral
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populations have increased in row crops by
12-84X after 6 wk for Phthorimaea
operculella GV (Matthiessen et al. 1978), by
>800X after 1 year for P. includens NPV
(McLeod et al. 1982), and by >6X after 4.5
months for 7. ni NPV (Thomas et al. 1972).
However, populations have decreased by
73-99% after 95 days for A. gerwnatalis NPV
(Young & Yearian 1986b), by 99.8% after 2
weeks for P. rapae GV (Tatchell & Payne
1984), by 22% after 1 season and 96% after 2
scasons for P. includens NPV (Young &
Yearian 1979), and by 32% over 4.5 months
and 85% over 318 weeks for 7. ni NPV
(Thomas et al. 1972, Evans 1986). In forests,
the population of Lymantria dispar NPV did
not increase over natural levels after 1 year
(Podgwaite et al. 1979), the Neodiprion
sertifer NPV produced 0.95-8.35 polyhedral
inclusion bodies (PIB) per PIB released after
25 days (Mochamed et al, 1983), and the O.
pseudotsugata NPV population grew by 100%
after one release and decreased by >99.9%
over 1 year after another (Thompson & Scott
1979).

Bacteria - Bacterial population growth
after release has been estimated only once,
perhaps because the best studied bacterium,
Bacillus thuringiensis, has so little persistent
activity. B. popilliae reached levels of 100
billion spores/kg of soil in the upper inch after
release (Faust & Bulla 1982), though this
bacterium does not replicate in soil, water, or
food preparations (Burges 1979). B.
thuriengiensis does not grow saprophytically
in the environment except in very limited
niches (Burges 1982). However, B,
sphaericus can grow saprophytically in
polluted water (Burges 1982), and it can
produce 10° to 10° spores per mosquito
cadaver in laboratory and in the field
(Davidson et al, 1984, DesRochers & Garcia
1984),

Fungi - There have been no direct
estimates of population density resulting from
field releases of fungi, though in certain cases
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rough estimates can be made from the
literature. Like some bacteria, certain fungi
can grow saprophytically in the environment.
It has been estimated in the laboratory that
pathogen units of B. bassiana increase 2-10X
in soil (Gottwald & Tedders 1984, Storey
Gardner 1987), and Hirsutella thompsonii has
been formulated to grow saprophytically after
application to foliage (McCoy 1978).
Percentage change in  fungal population
density after release can be estimated from
data for % mortality over time and host
population density. For exemple, Lagenidium
gigantewn introduced into a rice field
controlled mosquitoes, but the number of
resulting dead insects (and, presumably, the
number of pathogen units, assuming short
persistence) declined by ca, 90% in 62 days
(Kerwin & Washino 1986). V. rileyi, which is
typically released at a rate of ca. 10"
conidia/ha., can in turn produce 2.5 x 10" to
2.5 x 10'¢ conidia/ha. (Ignoffo 1981, 1985).

Conclusions about environmental fate

We have only a few data about certain
aspects of environmental fate of
entomopathogens after their release, such as
dispersal of fungi and population growth of
bacteria and fungi. Also, we do not have a
good conceptual understanding of aspects of
environmental fate in which there have been
numerous studies, such as persistence of
viruses. For example, we do not know why
some viruses <{e.g., the NPVs of A.
gemmatalis and N. sertifer) have established
in the environment after certain releases but
not after others. This will make prediction of

population dynamics for risk assessment
somewhat difficult.

ENVIRONMENTAL EFFECTS OF
ENTOMOPATHOGEN RELEASES

In addition to environmental fate, the other
factor determining entomopathogen impact on
the environment is the actual positive or
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negative effects on various environmental
components. This paper will review ounly the
effects observed after actual releases of
entomopathogens, not laboratory or
microcosm studies.

Environmental effects of viruses

Certain environmental effects of viruses
released for insect control have been studied
comprehensively, but others have received
little attention. The effects studied
comprehensively are the ones for which
releases are intended: increasing the pathogen
population, decreasing the insect population,
and increasing vegetation or fruit growth. The
literature is replete with examples of
reductions in host insect population density
and damage (Burges & Hussey 1971a, Burges
1981a, Kurstak 1982).

The viruses have the potential to cause an
important side effect on the host insect
population, the induction of resistance to
disease. Resistance has never been
demonstrated definitively after release of an
entomopathogenic virus, perhaps because the
viruses generally have not been applied as
widely as chemical insecticides. However,
resistance that results from the release of a
virus might have caused reduced infection
rates in one case (Briese & Podgwaite 1985).
On the other hand, after 27 yr there was no
indication of resistance in Diprion (=
Gilpinia) hercyniae populations to an NPV
that was released accidentally and established
in North America (Cunningham 1978).
Nevertheless, the possibility of resistance
should be considered when release strategies
are being designed.

The effects of entompathogens on
non-target organisms have been the subject of
much research, though the great bulk of this
has been in the laboratory. Lautenschlager et
al. (1978, 1979) found no adverse effects on
mice, voles, or birds after field release of L.
dispar  NPV. Field  application of
Choristoneura fumiferana NPV did not harm
small mammals (Buckner et al. 1975).
Cabbage for human consumption can contain
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46 x 10° to 3.3 x 10'* NPV PIB/kg,
apparently resulting from natural epizootics,
with no potential for causing ill effects
(Thomas 1975).

Viruses released for insect control can
indirectly harm nontarget organism (parasites
and predators) by competitive displacement or
by reducing a common resource, namely, the
host insect population. Applications of
Adoxophyes orana GV in orchards (Shiga et
al. 1973) and Heliothis armigera NPV in
sorghum (Teakle et al. 1985) apparently
reduced insect parasitoid populations in this
manner. Application of C. figniferana NPV
and entomopox virus in forests had no overall
effect on parasitoid populations (Morris
1977a), and application of §. frugiperda NPV
in corn reduced parasitoid populations in some
tests but had no effect in others (Hamm &
Ware 1982). Similarly, application of
Pseudoplusia  includens NPV reduced
parasitism by the entomopathogenic fungi
Nomuraea rileyi and Entomophthora sp.
(Holloway 1971), and the Anticarsia
gemmatalis NPV reduced parasitism by N.
rileyi (Moscardi et al. 1981, Richter & Fuxa
1984, Moscardi & Ferreira 1985). On the
other hand, aerial application of L. dispar
NPV in forests had no effect on populations of
mice, voles or birds (Lautenschlager et al,
1978, 1979). Populations of these animals
probably were not affected as much as the
parasitoids or pathogens in the previous
examples because the latter were more host
specific and thus dependent on the host insect
for a food source.

Little is known about other effects of
released viruses on nontarget organisms.
Recombination can occur between closely
related baculoviruses (Faulkner & Boucias
-1985). Presumably, therefore, genes in a
released baculovirus could be distributed into
field populations of related viruses. Also, it
has been demonstrated that the ingestion of
one baculovirus can activate a presumably
latent infection of another baculovirus in an
insect (Longworth & Cunningham 1968,
Jurkovicovd 1979, McKinley et al. 1981), but
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this has not been demonstrated in field
populations.

The only known effect on soil of viral
application is the increase in the viral
population; the virus cannot grow in the soil
substrate thereby causing some adverse effect,
and the viral proteins are not known to be
toxic to or a food source of any soil
organisms. Though a relatively heavy viral
population can accumulate and persist in soil,
little virus can be found below a depth of
about 10 cm after either natural epizootics or
artifical apllication (Jaques 1969, 1970;
Hukuhara 1973; Thompson & Scott 1979;
Entwistle 1986).

There are virtually no data concerning viral
effects in water or air. Entomopathogenic
viruses can be transported through the air by
aerosols, insects, and other agents, but it is
unlikely that they are transported or persist by
themselves in the air (Bird 1961) because they
are killed by sunlight. Naturally occutring
entomopox virus populations were rapidly
diluted by water currents in flood control
channels (Harkrider & Hall 1978). Finally,
because of their adhesion to particles in layers
near the surface of soil, it is not likely that
NPVs or GVs will contaminate groundwater
(Jaques 1975).

One positive, indirect environmental effect
of viruses for insect control is likely but has
not been well demonstrated. These viruses
would replace a proportion of chemical
insecticides currently used and thereby
alleviate to some degree their adverse
environmental effects: pollution of air, soil,
and water; hazards to nontarget organisms;
insect resistance; and outbreaks of secondary
pests. For example, it has been estimated that
the Heliothis NPV, if it could be made
practical for insect control, could reduce the
use of chemical insecticides in cotton by 7.7 X

10¢ kg annually (Ignoffo & Anderson 1979),

Environmental effects of bacteria

Environmental effects of
entomephathogenic bacteria, like those of the
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viruses, are largely innocuous. The major
effects are a short- or long-term increase in
the pathogen population, a decrease in the
target insect population, and a decrease in
damage to host plants (Burges & Hussey
1971a, Burges 1981a, Kurstak 1982).

In addition to lowering population
densitities of target insects, bacteria can have
a qualitative effect on the host population by
induction of resistance. Insect resistance to
bacteria applied in the field has not yet been
demonstrated, although resistance to B,
thuringiensis in Plodia interpunctella has
occurred in stored grain (McGaughey 1985).
In contrast, Spodoptera littoralis populations
in the field and laboratory became more
susceptible after exposure to B. thuringiensis
(Sneh & Schuster 1983). It is possible that
scarab beetles could become resistant to B.
popilliae after 12 yr in the field, but there are
not yet enough data to support that conclusion
(Dunbar & Beard 1975). Finally, there are
several examples of sublethal effects, such as
reduced vigor, size, fecundity, and pupation,
in insects that survive exposure to B.
thuringiensis (Morris 1982, Smirnoff 1983).

As with the viruses, most of the research of
effects of entomopathogenic bacteria on
nontarget organisms has been in the
laboratory. Bacteria released in the field either
have not affected or have adversely affected
inveriebrate predator and parasitoid
populations, probably by reducing populations
of the host insect. B. thuringiensis reduced
beneficial arthropods in five experiments but
did not affect them in eight others (Forsberg
1976, Morris 1977b, Reardon et al. 1979,
Morris et al. 1980, Jaques & Morris 1981). B.
thuringiensis released in the field did not
affect populations of vertebrates or nontarget
invertebrates in terrestrial and aquatic
environments (Forsberg 1976, Faust & Bulla
1982). B. thuringiensis can successfully
compete for survival against other bacterial
species in some, but not all, types off soil
(Dulmage & Aizawa 1982). B. thuringiensis
var. israelensis did not affect populations of
nontarget species from six orders of insect and
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one mite in two field experiments (Colbo &
Undeen 1980), Gibbs et al. 1986), and B.
thuringiensis var, tenebrionis had no adverse
effect on two entomophagous insects (Krieg et
al. 1984). Similarly, another field trial
indicated no adverse effects by B. sphaericus
on nontarget species of Crustacea,
Ephemeroptera, or Diptera (Mulligan et al.
1978).

Litle is known about other effects of
released entomopathogenic  bacteria on
non-target organisms. Based on laboratory
data, it is generally believed that the danger of
genetic exchange by B. thuringiensis through
transduction or transformation is very low
(Faust & Bulla 1982, Mormris 1982). Two
varieties of B. thuringiensis proved stable
after 9 mo in a field experiment (Dulmage &
Aizawa 1982). On the other hand, Forsberg
(1976) did not believe that there was enough
evidence to support conclusions about genetic
stability. The only other known effect induced
by released bacteria is the increase in numbers
of microorganisms. In laboratory tests, when
B. thuringiensis was introduced into field soil
that contained no insects, microbial
populations  increased, including other
bacteria, Actinomycetes, fungi, and nematodes
(Pruett et al. 1980), Petras & Casida 1985).
Cadavers of mosquitoes killed by B.
thuringiensis var. israelensis are fed on by
protozoa and saprophytic fungi, and B.
thuringiesis var. israelensis vegetative cells
are directly used for food by protozoa in
aquatic habitats (Aly et al. 1985).

The only demonstrated effects on soil,
water, or air of bacterial application are an
increase in the population of the bacterium

applied and its toxins and occasionally
increased populations of other
microorganisms. The B. thuringiensis

population in soil may not increase beyond a
certain level in some situations, despite
repeated applications (Dulmage & Aizawa
1982). The two bacteria used for aquatic
applications, B. thuringiensis var. israelensis
and B. sphaericus, settle to the bottom within
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hours (Mullingan et al. 1980, Mulla et al.
1982, Aly et al. 1985, Apperson et al. 1986,
Gibbs et al. 1986). Burges (1979) estimated
that a typical application of B. thuringiensis to
terrestrial plants increases the Bacillus
population by only 5% and that this
percentage drops in 3 mo. He concluded that
the proportion of B. thuringiensis reaching
public water supplies would be *‘very small in
comparison with normal soil Bacillus spp™.

Finally, the bacteria, particularly B.
thuringiensis, replace a proportion of chemical
insecticides and reduce their adverse
envircnmental effects when they are used for
insect control. Morris et al. (1986) estimated
that B. thuringiensis was sprayed on about
870,000 ha of Canadian forest for spruce
budworm control in 1985, replacing about half
of the quantity of chemical pesticides used
previously.

Environmental effects of fungi

The major effects of entomopathogenic
fungi released intc the environment again
result mainly from their intended purpose. The
fungi have caused short-and long-term
increases in the released fungal population and
decreases in the host-insect population and in
damage to the host plant or other resources
consumed by the insect (Burges & Hussey
1971a, Burges 1981a).

Certain fungal species have more potential
than the viruses, bacteria, or other fungi to
adversely affect non-target organisms; there
has been little field evidence of such effects,
and they would not be nearly as severe as
those resulting from chemical insecticides.
Verticilliion lecanii, Hirsutella thomponii,
Nomuraea rileyi, Lagenidium giganteum,
and most Entomophthorales have fairly
specific host ranges and have proven safe to
date in laboratory tests (Burges 1982).
Metarhizium  anisopliae and Beauwveria
bassiana occasionally infect reptiles, perhaps
as opportunistic pathogens (Burges 1981b);
and certain fungi being researched for insect
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control, particularly B. bassiana, cause
allergic reactions in humans (Burges 1981b).
Certain fungi, suoch as B. bassiana, M.
anisopliae (Hall & Papierok 1982), and
1obypocladium cylindrosporum (Garcia &
Sweeney 1986), have broad host ranges
among insects and thus could affect
populations of beneficial insects. However,
there are few data concerning direct or
indirect effects of fungi on non-target
organisms after field releases. In one
experiment, V. rileyi had no deleterious effect
on insect parasitoids (Hamm & Ware 1982). In
another example, natural epizootics of several
entomopathogenic  fungi  interfered with
beneficial insects which in tarn resulted in
increases in populations of pestiferous
Noctuidae in cotton (Falcon 1973). Beauveria
bassiana is pathogenic to honeybees in the
laboratory but is not known to infect them in
nature (Laird 1973). It is likely that further
research will indicate that fungi, like bacteria
and virases, indirectly and perhaps directly
reduce populations of beneficial insects,
though not to the same extent as many
chemical insecticides. The only other effects
of fungi on non-target organisms were
demonstrated with soils returned to the
laboratory; B. bassiana in soil apparently
served as a food substrate or source for
bacteria, amoebae, and soil animals such as
Acarina and Collembola (Fargues et al. 1983)
and thus could conceivably affect populations
of those organisms.

The only demonstrated effect of released
fungi on soil, water, or air is increased
pathogen population density. Several fungi
such as B. bassiana are often found to occur
naturally at detectable levels in soil (Doberski
& Tribe 1980, Quinn & Hower 1985). More
than 95% of conidia of N. rileyi and B.
bassiana stay in the upper 5 cm after
application to various soils (Ignoffo 1981,
Storey & Gardner 1987), and only small
percentages of B. bassiana conidia are carried
by water to depths of 10-15 cm. (Storey &
Gardner 1987). Thus there is little chance that
conidia of these two species will reach
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groundwater after release. There have been no
counts of numbers of conidia in the air after
release of a fungus, but it is possible that such
counts would indicate an increase. Natural
epizootics have increased the number of
conidia of N. rileyi and Entomophthora
gammae in the air above soybean fields (Kish
& Allen 1978, Harper et al. 1984). Heavy
rains wash the air of wind-borne conidia of N,
rileyi (Kish & Allen 1978).

ENVIRONMENTAL RISKS OF
RECOMBINANT-DNA
ENTOMOPATHOGENS

There are virtually no data in the literature
concerning environmental effects of
recombinant-DNA (r-DNA) entomopathogens,
largely because regulatory agencies in
developed nations have permitted very few
releases. Though there are no data on
environmental effects, the environmental risks
of releases of r-DNA microorganisms in
general have been a major topic of discussion.
Before the viewpoints about these
environmental risks are summarized, it is

important to point out the potential
environmental benefits of r-DNA
entomopathogens. Genetic engineering is

expected to greatly expand the use of
microbial control of insects and thus reduce
the array of hazards or hannful side effects
associated with chemical insecticides.

There are three major, complex concerns
about releasing r-DNA organisms into the
enviromment (Fuxa 1990). The first is that
they might have unexpected and deleterious
propertics after release, Some scientists
believe that r-DINA is so different from other
genetic manipulations that there will be
unexpected problems, just as there were with
DDT. Genetic exchange among genera,
multiple mutations, and unusual evolutionary
potential could cause problems such as
unexpected pathogenicity in non-targets.
Other scientists believe that r-DNA organisms
will be more predictable. There has been no
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evidence of such problems in the laboratory,
and genetic exchanges between distantly
related organisns is much more likely to
decrease the recombinant’s environmental
fimess rather than cause unexpected
pathogenicity. They also argue that the
addition of DNA with coding for specific
functions is not the same as random disruption
of DNA or random mutation.

A second category of concemn is that the
recombinant organisms could cause ecological
disruptions. Some scientists argue that the
organism could itself become a pest or some
sort of “super species”. They support this
contention by the past history of accidental
and intentional biological mtroductions; ‘a
disturbing proportion of them has been
environmentally harmful. R-DNA organisms
could have new survival modes and
advantages even with changes in only one or a
few genes; the influenza viral strains are often
given as a pertinent example. One of the more
likely problems is the induction of resistance
to the agent in the insect populations, due
partly to certain release strategies currently
under consideration or development. Scientists
in favor of release point out that the likely
reduction of fitness of the recombinant and the
danger of generalizing all past releases to
draw conclusions about carefully designed
r-DNA organisms invalidates most of these
concerns. Examples such as the influenza
virus represent very specific genetic changes
that will differ from the ones being added by
man. Additionally, most of the history of
agricalture is based on  bioclogical
introductions.

The third concer is the unintended transfer
of the genetic material to other organisms after
release. If this happens, then the other areas of
concern can resurface. Such transfers certainly
are possible according to laboratory
experiments. However, they are less likely in
nature, and, if they do occur, the recipient
organism is much more likely to decline in
environmental fithess and competitiveness
than to cause any environmental problems.

These arguments have had an interesting
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side effect. A committee of the U.S. National
Academy of Sciences, as well as other
prestigious groups of scientists, have
concluded that the organism to be released and
its target environment, not the method by
which it was modified, should be the basis for
risk assessment (National Academy of
Sciences 1987, Tiedje et al. 1989). This
conclusion, aleng with the sometime
troublesome history of biological releases in
agriculture, has led to a re-examination of
policy in the USA for releasing natural strains,
including entomopathogens. These
complexities have made it difficult to do
research in this area with natural strains in
recent years, though there are indications that
this problem is becoming less severe.

CONCLUSION

It is clear that the environmental impact of
entomopathogen releases has been minimal to
date, but it also is clear that this is a critical
area for further research if microbial control,
particularly with r-DNA entomopathogens, is
to be widely implemented. Perhaps the only
risks associated with the natural strains are the
possibility of inducing resistance in host
populations and the possibility of initiating
disease epizootics in populations of arthropods
that are in danger of extinction and that are
closely related (depending on the host range
of the entomopathogen) to the target species.
These risks will certainly be outweighed by
the benefits of reducing reliance on chemical
insecticides. Concerning r-DNA
microorganisms, these are generally perceived
as having a low probability of causing
environmental harm but potentially severe
consequences if harm occurs (Florio 1985,
Davis 1987). Zero risk will not be possible
nor should it prevent releases; the potential
benefits of release are likely to outweigh the
risks. However, the potential benefits and
risks must be carefully considered before
releases, particularly in developing nations
where regulation of the use of alternative
control agents are poorly developed (NorAgric
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1990). Thus, regulatory agencies and the
general public probably should recognize that
eventually some environmental problem will
arise from a release. If such problems can be
kept to a minimum and can be used as
experience to avoid further mistakes, then
society undoubtedly will benefit just as it has
from many other biological introductions
during the history of agriculture.
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