MANGANÊS NO SOLO, SUA AVALIAÇÃO E TOXIDEZ DE MANGANÊS EM SOJA

CIRO A. ROSOLEM, MARCO A. BESSA, PEDRO G. DO AMARAL e HÉLIO F.M. PEREIRA

RESUMO - Foram conduzidos dois experimentos em vasos contendo um Latossolo Roxo Distrófico com saturação em bases de 15%. No primeiro experimento foi feita calagem para atingir 45, 60, 75 e 90% de saturação em bases. No segundo ensaio, foram aplicados 30, 60, 90 e 120 ppm de Mn, na forma de MnSO₄, no solo corrigido para 70% de saturação em bases. A soja (Glycine max L. Merr., cv. IAC-9) foi cultivada até R₅, quando foi colhida. Foi observada resposta significante da planta à calagem, com aumentos de produção até 60% de saturação em bases. O Mn aplicado não foi suficiente para causar toxidez na soja cv. IAC-9, no solo corrigido. Todos os extratores (acetato de amônio, DTPA, Mehlich e H₂SO₄) mostraram modificação do Mn trocável do solo, mas a falta de correlação com o Mn absorvido e produção de matéria seca não recomendam sua utilização generalizada.

Termos para indexação: nutrição mineral, diagnose foliar.

SOIL MANGANESE, ITS DETERMINATION, AND MANGANESE TOXICITY IN SOYBEANS

ABSTRACT - Two experiments were carried out in pots with a Dusky Latossol showing a 15% base saturation. In the first experiment dolomitic limestone was applied to reach 45, 60, 75 and 90% of base saturation. In the second, MnSO₄ was applied in rates of 30, 60, 90 and 120 ppm, and base saturation was raised to 70%. Soybean plants cv. IAC-9 were grown up to R₅, when dry matter production and manganese accumulation were evaluated. Soybean responded to liming up to 60% base saturation, as Mn availability and eventually Mn absorption were decreased to non-toxic levels. Mn applied to a reclaimed soil up to 120 ppm was not enough to cause toxicity to soybean cv IAC-9. All of the chemical extractors (Ammonium Acetate, DTA, Mehlich and H₂SO₄) showed modification in Mn availability in soil but were not definitely related to Mn absorption and dry matter production.

Index terms: mineral nutrition, foliar diagnosis.

INTRODUÇÃO

A toxidez de manganês em soja tem como consequência um efeito depressivo sobre a nodulação, além da redução na produtividade (Franco & Döbereiner 1971). A redução na produção de grãos acontece como consequência da produção de um baixo número de vagens com grãos pequenos. O mesmo efeito pode ser observado em plantas de soja deficientes em Mn (Heenan & Campbell 1980).

No Brasil, o Mn do solo tem sido um problema generalizado para a cultura da soja (Coutinho et al. 1971, Almeida & Sfredo 1979; Mascarenhas et al., 1982). Desta forma, procura-se recomendar doses de calagem suficientes para a neutralização do Mn tóxico. No entanto, esta prática, dependendo das condições locais, pode criar condições potenciais para que haja indução de deficiência de Mn em soja, conforme demonstrado por Rosolem & Nakagawa (1990).

O equacionamento do problema é difícil, uma vez que as cultivares de soja apresentam grande viabilidade quanto à faixa deficiência-toxidez de Mn (Miranda et al. 1982, Ohki et al. 1980). Por outro lado, a determinação do Mn no solo é bastante influenciada pelo pH (Cox 1968), entre outros fatores, tornando difícil o estabelecimento de níveis críticos.

Em que pesem estas considerações, tem-se

conseguido sucesso no estabelecimento de níveis críticos de Mn no solo com relação à soja, por diversos autores, conforme Tabela 1.

Dos diferentes extratores que podem ser utilizados, os precursores de maior potencial encontram-se na Tabela 2. O método de Mehlich 1, apesar de apresentar restrições principalmente quanto ao pH do solo (Cox 1968), é o que vem sendo utilizado em maior escala, por ser um método utilizado rotineiramente para a determinação de P e K, e portanto não implica em custos extras.

Com relação aos níveis de Mn na planta, algumas tentativas foram feitas no sentido de delimitar a faixa ótima de teores, em que a produtividade é máxima. Alguns desses resultados encontram-se na Tabela 3.

Considerando-se a falta de concordância encontrada na literatura, torna-se interessante a determinação de teores de Mn no solo, rela-

TABELA 1. Níveis críticos de Mn no solo para deficiência.

<table>
<thead>
<tr>
<th>pH</th>
<th>ppm Mn</th>
<th>Extrator</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4,7</td>
<td>Mehlich 1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>9,7</td>
<td>Mehlich 1</td>
<td>Mascagni Júnior & Cox (1985)</td>
</tr>
<tr>
<td>6</td>
<td>3,9</td>
<td>Mehlich 1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8,0</td>
<td>Mehlich 1</td>
<td></td>
</tr>
<tr>
<td>5,2-7,1</td>
<td>2-10</td>
<td>Mehlich 1</td>
<td>Cox (1968)</td>
</tr>
<tr>
<td>5,5</td>
<td>16</td>
<td>NH₄OAc</td>
<td>James & Nelson (1979)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>DTPA</td>
<td>Viets Junior & Lindsay (1973)</td>
</tr>
</tbody>
</table>

TABELA 2. Extratores mais utilizados para determinação do manganês trocável.

<table>
<thead>
<tr>
<th>Autor</th>
<th>Extrator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gajbhiye et al. (1984)</td>
<td>DTPA, NH₄OAc (pH 4,8)</td>
</tr>
<tr>
<td></td>
<td>HC10₄, IN₃, NH₄OAc (pH 4,8)</td>
</tr>
<tr>
<td>Mascagni Júnior & Cox (1985)</td>
<td>NH₄OAc (pH 7,0)</td>
</tr>
<tr>
<td>Cox (1968)</td>
<td>Mehlich 1 mHeli I (pH 1)</td>
</tr>
<tr>
<td>Martini & Mutters (1985)</td>
<td>Mehlich 1</td>
</tr>
</tbody>
</table>

TABELA 3. Níveis de Mn em folhas de soja em que é provável a manifestação de deficiência e toxicidade do nutriente.

<table>
<thead>
<tr>
<th>Deficiência</th>
<th>Toxicidade</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>------------</td>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td>ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>Cox (1968)</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>Ohki et al. (1980)</td>
</tr>
<tr>
<td>14</td>
<td>250</td>
<td>Ohlrogge & Kamprath (1968)</td>
</tr>
<tr>
<td>22</td>
<td>140-250</td>
<td>Herman & Campbell (1980)</td>
</tr>
<tr>
<td>18</td>
<td>200</td>
<td>Ohki et al. (1980)</td>
</tr>
<tr>
<td>-</td>
<td>300</td>
<td>Miranda et al. (1982)</td>
</tr>
<tr>
<td>-</td>
<td>180</td>
<td>Martini & Mutters (1985)</td>
</tr>
</tbody>
</table>

cionando-o à produtividade de cultivares brasileiras de soja aos níveis de Mn nas folhas, procurando-se subsídios para o estabelecimento de padrões que poderão auxiliar nas recomendações de calagem e adubação.

No presente trabalho foi estudada a reação de cultivo de soja IAC-9 a níveis de Mn no solo, procurando-se determinar o extrator que melhor corresponda à resposta da planta. Além disso, procurou-se delimitar níveis críticos de Mn no solo e na planta, procurando-se determinar os limites acima dos quais haveria possibilidade de ocorrer toxicidade de Mn.

MATERIAL E MÉTODOS

Foram instalados dois experimentos em casa de vegetação, em vasos contendo 4 litros de terra oriunda de um Latosolo Roxo distrófico, com 15% de saturação em bases. Foi utilizada a cultivar IAC-9. Os tratamentos foram estabelecidos um mês antes da semeadura, e a terra foi mantida com umidade próxima à capacidade de campo.

Os ensaios foram instalados com quatro repetições, num delineamento em blocos casualizados. Semanalmente, os vasos foram transferidos de lugar, no intuito de minimizar variações dentro da casa de vegetação.

Na semeadura, foram tomadas amostras de terra de cada um dos vasos. Nessas amostras, além das determinações de rotina, o Mn foi extraído com acetato de amônio 1 N, DTPA/TEA, Mehlich, HCl 0,05 N + H₂SO₄ 0,025 N e H₂SO₄ 0,05 N (Gramebili & Patrick Junior 1982).

Adubações com P e K foram efetuadas de acordo com o esquema inicial da terra. O N foi fornecido na
formas mineral, para eliminar o efeito dos tratamentos sobre a simbiose.

Cinco sementes foram colocadas e germinou em cada vaso, mas após a emergência foi feito desbaste para duas plantas por vaso.

No florescimento (R2), as terceiras folhas, a contar do ápice, foram amostradas para diagnóstico foliar.

No final do experimento (plantas colhidas em R4), foram estimuladas as produções de matéria seca, assim como a acumulação de Mn pelas plantas, relacionando-se estes resultados com os obtidos na análise de terra e no diagnóstico foliar.

No primeiro experimento foi efetuada calagem com 8,9 t de calcário/ha para se atingir 70% de saturação em bases em todos os vasos. A seguir, foram estabelecidos níveis de Mn, através da adição de MnSO4, nas doses de 0, 30, 60, 90 e 120 ppm de Mn, procurando-se obter teores tóxicos do nutriente no solo.

No segundo experimento, foi feita calagem com 4,4. 7,2, 9,7 e 12,1 t de calcário/ha para obtenção de 45%, 60%, 75%, 90% de saturação em bases respectivamente, além da testemunha. Foi utilizado calcário calcinado com PRNT de 100%.

RESULTADOS E DISCUSSÃO

As plantas de soja do tratamento sem calagem mostraram severa toxidez de Mn no início do ciclo. Com o passar do tempo a temperatura elevou-se, fazendo com que desaparecessem por completo os sintomas mais evidentes (Heeman & Carter 1977), permanecendo apenas o menor desenvolvimento destas plantas, que produziram bem menos matéria seca que as demais (Tabela 4). Houve resposta até a saturação de 60%, o que concorda com Mascarenhas et al. (1982). No experimento com doses de Mn, a quantidade aplicada não foi suficiente para diminuir significativamente a matéria seca da parte aérea das plantas (Tabela 5). Alguma variação foi verificada nas raízes, mas para estas variações foi impossível estabelecer uma relação causa-efeito.

No experimento com doses de calcário foi notada uma queda brusca nos teores de Mn na parte aérea da planta e na terceira folha, quando se passou de 15 para 45% na saturação em bases, praticamente não havendo mais modificação com as doses maiores de calcário.

TABELA 4. Matéria seca de raízes e parte aérea de soja IAC-9 em função do calcário aplicado.

<table>
<thead>
<tr>
<th>Tratamento</th>
<th>Raiz</th>
<th>Parte aérea</th>
</tr>
</thead>
<tbody>
<tr>
<td>cal</td>
<td>V</td>
<td>g/planta</td>
</tr>
<tr>
<td>0</td>
<td>15</td>
<td>6b</td>
</tr>
<tr>
<td>4,8</td>
<td>45</td>
<td>9ab</td>
</tr>
<tr>
<td>7,2</td>
<td>60</td>
<td>9ab</td>
</tr>
<tr>
<td>9,7</td>
<td>75</td>
<td>10a</td>
</tr>
<tr>
<td>12,1</td>
<td>90</td>
<td>10a</td>
</tr>
</tbody>
</table>

CV % | 12,8 | 6,3 |

TABELA 5. Matéria seca de raízes e parte aérea de soja IAC-9 em função da aplicação de Mn, em solo Latossolo Roxo com 70% de saturação em bases.

<table>
<thead>
<tr>
<th>Tratamento</th>
<th>Raiz</th>
<th>Parte aérea</th>
</tr>
</thead>
<tbody>
<tr>
<td>uMn/ml</td>
<td>g/planta</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>9ab</td>
<td>21a</td>
</tr>
<tr>
<td>30</td>
<td>8b</td>
<td>19a</td>
</tr>
<tr>
<td>60</td>
<td>9ab</td>
<td>20a</td>
</tr>
<tr>
<td>90</td>
<td>8b</td>
<td>19a</td>
</tr>
<tr>
<td>120</td>
<td>12a</td>
<td>20a</td>
</tr>
</tbody>
</table>

Quando foi aplicado Mn a um solo corregido (Tabela 7), houve aumento significativo nos teores de Mn das raízes e na terceira folha, e apenas uma tendência na parte aérea como um todo. Entretanto, os níveis atingidos não foram suficientes para afetar de modo significativo a produção de matéria seca. Neste caso, a raiz parece ter agido como órgão acumulador de Mn, evitando, por algum mecanismo, sua translocação para a copa, onde a toxidez poderia se manter, embora tenha sido demonstrado que o sistema radicular possui influência na resposta da soja à disponibilidade de Mn (Brown & Jones 1977).

TABELA 6. Teores de manganês nas partes da soja IAC-9 em função de doses de calcário.

<table>
<thead>
<tr>
<th>Tratamento</th>
<th>Raiz</th>
<th>Parte aérea</th>
<th>3ª folha</th>
</tr>
</thead>
<tbody>
<tr>
<td>t/ha</td>
<td>%</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>0</td>
<td>15</td>
<td>145 a</td>
<td>417 a</td>
</tr>
<tr>
<td>1,8</td>
<td>45</td>
<td>130 ab</td>
<td>69 b</td>
</tr>
<tr>
<td>7,2</td>
<td>60</td>
<td>86 b</td>
<td>59 b</td>
</tr>
<tr>
<td>9,7</td>
<td>75</td>
<td>127 ab</td>
<td>50 b</td>
</tr>
<tr>
<td>12,1</td>
<td>90</td>
<td>86 b</td>
<td>47 b</td>
</tr>
<tr>
<td>CV %</td>
<td>25,2</td>
<td>20,5</td>
<td>15,3</td>
</tr>
</tbody>
</table>

TABELA 7. Teores de manganês nas partes da soja IAC-9 em função do Mn aplicado em solo Latossolo Roxo distrófico com 70% de saturação em bases.

<table>
<thead>
<tr>
<th>Tratamento</th>
<th>Raiz</th>
<th>Parte aérea</th>
<th>3ª folha</th>
</tr>
</thead>
<tbody>
<tr>
<td>uMn/ml</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>0</td>
<td>77 b</td>
<td>46 a</td>
<td>75 b</td>
</tr>
<tr>
<td>30</td>
<td>111 b</td>
<td>62 a</td>
<td>74 b</td>
</tr>
<tr>
<td>60</td>
<td>105 b</td>
<td>98 a</td>
<td>88 ab</td>
</tr>
<tr>
<td>90</td>
<td>128 b</td>
<td>79 a</td>
<td>106 a</td>
</tr>
<tr>
<td>120</td>
<td>204 a</td>
<td>98 a</td>
<td>125 a</td>
</tr>
<tr>
<td>CV %</td>
<td>23,9</td>
<td>37,9</td>
<td>14,4</td>
</tr>
</tbody>
</table>

A acumulação de Mn pela soja cv. IAC-9 foi afetada pela calagem (Tabela 8). A quantidade total na planta, assim como na parte aérea, foi bem maior no tratamento sem calagem, não havendo diferença entre os demais, embora tenham ocorrido tendências de diminuição com o aumento das doses de calcário. Entretanto, nas raízes a quantidade acumulada não foi afetada pela aplicação de calcário, o que mostra que este órgão foi tolerante ao Mn disponível nestas condições. Existe, na literatura, uma série de evidências de que a toxidez de Mn em soja é regulada pela copa (Brown & Jones 1977).

In experiment with doses of Mn, there was a general tendency of the soybean to accumulate more Mn with increasing doses, but in the aerial part, the increase was not significant (Table 9). Once the changes in the soil were not conclusive (Table 5), it is clear that this was an effect from the Mn in the shoots (Table 7).

The Mn levels in the soil affected the Mn content in the entire plant. The total Mn content in the aerial part was significantly higher in the treatments without lime compared to the others, while no significant differences were observed in root Mn content, indicating that Mn tolerance is not affected by Mn levels in the soil. This is consistent with the findings that in soybean, Mn toxicity is regulated by the canopy (Brown & Jones 1977).

No experimento com doses de Mn, houve uma tendência geral da soja de acumular mais Mn com o aumento das doses, mas na parte aérea o aumento não foi significativo (Tabela 9). Uma vez que as alterações na matéria seca não foram conclusivas (Tabela 5), fica claro que este foi um efeito da concentração de Mn nos tecidos (Tabela 7).

Os níveis de calcário aplicados tiveram efeito na quantidade de Mn trocável extraído do solo pelos diversos extratores. Foram obtidas regressões significativas para o acetato, o DTPA e HSO₄, mas o coeficiente de determinação foi baixo (Tabela 8).

TABELA 8. Teores de Mn acumulado nas raízes, parte aérea e total na soja IAC-9 em função da aplicação de calcário.

<table>
<thead>
<tr>
<th>Tratamento</th>
<th>Raiz</th>
<th>Parte aérea</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>t/ha</td>
<td>%</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>0</td>
<td>15</td>
<td>0,89 a</td>
<td>5,54 a</td>
</tr>
<tr>
<td>1,8</td>
<td>45</td>
<td>1,25 a</td>
<td>1,40 b</td>
</tr>
<tr>
<td>7,2</td>
<td>60</td>
<td>0,80 a</td>
<td>1,37 b</td>
</tr>
<tr>
<td>9,7</td>
<td>75</td>
<td>1,39 a</td>
<td>0,94 b</td>
</tr>
<tr>
<td>12,1</td>
<td>90</td>
<td>0,91 a</td>
<td>0,98 b</td>
</tr>
<tr>
<td>CV %</td>
<td>37,5</td>
<td>25,3</td>
<td>28,6</td>
</tr>
</tbody>
</table>

TABELA 9. Mn acumulado nas raízes, parte aérea e total da soja IAC-9, em função da aplicação de Mn, em Latossolo Roxo distrófico, com 70% de saturação em bases.

<table>
<thead>
<tr>
<th>Tratamento</th>
<th>Raiz</th>
<th>Parte aérea</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>uMn/planta</td>
<td>mg/planta</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>0</td>
<td>0,71 b</td>
<td>0,99 a</td>
<td>1,70 b</td>
</tr>
<tr>
<td>30</td>
<td>0,96 b</td>
<td>1,06 a</td>
<td>2,02 b</td>
</tr>
<tr>
<td>60</td>
<td>0,92 b</td>
<td>1,71 a</td>
<td>2,63 ab</td>
</tr>
<tr>
<td>90</td>
<td>1,05 b</td>
<td>1,52 a</td>
<td>2,57 ab</td>
</tr>
<tr>
<td>120</td>
<td>2,39 a</td>
<td>2,19 a</td>
<td>5,23 a</td>
</tr>
<tr>
<td>CV %</td>
<td>31,2</td>
<td>39,5</td>
<td>42,2</td>
</tr>
</tbody>
</table>

nação foi muito baixo para este último (Fig. 1). O melhor coeficiente de determinação neste caso foi obtido para o acetato, vindo a seguir o DTPA.

Entretanto, quando se correlacionou o Mn extraído com Mn aplicado em solo corrigido, todos os extratores comportaram-se razoavelmente, mas novamente o coeficiente de determinação do acetato foi o melhor (Fig. 2).

[Diagrama mostrando gráficos de relacionamento entre Mn extraído e aplicado em função de diferentes extratores]

FIG. 1. Manganês trocável, extraído por três soluções extratoras em função da saturação em bases de um Latossolo Roxo distrófico.

FIG. 2. Manganês trocável, extraído por quatro soluções extratoras em função de níveis de manganês estabelecidos em um Latossolo Roxo distrófico.

Analisando-se a relação entre Mn extraído e concentração de Mn na planta, nota-se que quando os níveis do nutriente no solo foram modificados pela calagem (Fig. 3), com exceção de "Mehlich 1", todos os extratores apresentaram coeficientes de determinação significativos, mas apenas o acetato e o DTPA mostraram coeficientes de determinação de 0,70 ou mais. Enfatizando, quando os níveis de Mn no solo foram modificados pela adição de sal, o desempenho dos extratores ficou muito comprometida, apesar de os coeficientes de determinação se mostrarem significativos (Fig. 4). Borkert et al. (1984) encontraram boa correlação entre Mn extraído pelo acetato e concentração de Mn na soja, mas os autores modificaram os níveis do nutriente no solo através da calagem e analisaram plantas inteiras, na época do florescimento.

Com relação à quantidade de Mn absorvida em função do Mn extraído, no experimento de calagem, a Fig. 5 mostra coeficiente de determinação significativo para o acetato, o DTPA e o H₂SO₄, mas este último com valor muito baixo. Quando o Mn disponível foi modificado pela adição de Mn (Fig. 6), o acetato não mostrou coeficiente de determinação significativo, tendo Mehlich se comportado melhor que os demais.

FIG. 3. Concentração de manganês na planta de soja, em função do manganês trocável avaliado por diversos extratores, em solo tratado com 5 doses de calcário.

FIG. 4. Concentração de manganeses na planta de soja, em função do manganes trocável extraído com diversos extratores, em solo tratado com doses de sulfato de manganes.

FIG. 5. Quantidade de manganes absorvido pela soja, em função do manganes trocável extraído por diversos métodos, em solo tratado com 5 doses de calcário.

Relacionando-se a matéria seca produzida com o Mn extraído, no experimento de calagem, não se conseguiu coeficiente de determinação significativo para o Mehlich (Fig. 7). Para os outros extratores, os coeficientes foram significativos, embora baixos. No experimento com doses de Mn não foram obtidas relações significativas da matéria seca produzida com Mn extraído, uma vez que não houve resposta significativa em termos de produção de matéria seca de soja.

Na Fig. 8 encontra-se a regressão ajustada aos dados de percentagem de matéria seca
FIG. 8. Nível crítico de manganês em folhas de soja, determinado pela correlação entre concentração de manganês e produção de massa seca.

produzida pela soja em função do teor de Mn na terceira folha, determinados com experimento com calagem. Através da diferença mínima significativa determinada pelo teste de Tukey ao nível de 5%, foi determinado o teor crítico de Mn na terceira folha, que neste caso foi de 90 ppm, com diminuição de 11% na produtividade (Fig. 8).

Um bom extrator, confiável para análises de rotina, deveria apresentar coeficientes de determinação significativos e relativamente altos em todas as situações estudadas. Apenas o DTPA e H₂SO₄ satisfazem a primeira premissa, ou seja, apresentaram coeficientes de determinação significativos em todas as situações, de acordo com o resumo apresentado na Tabela 10. Esta afirmativa é justificada pelo fato de que, apesar de não se obterem diferenças na produção de matéria seca de soja no experimento com doses de Mn, a planta absorveu mais Mn nas maiores doses. A não-manifestação da toxidez pode estar refletindo um mecanismo de tolerância da cultivar (Rosolem 1989).

Ainda de acordo com a Tabela 10, os coeficientes de determinação do H₂SO₄ foram sempre muito baixos, refletindo uma baixa precisão na estimativa, o que desqualifica este método. O DTPA apresentou coeficientes de determinação variando de 0,47 a 0,75, o que, apesar de não refletir o fenômeno estudado

TABELA 10. Coeficientes de determinação obtidos para os diversos extratores, nos dois experimentos, considerando todos os resultados em conjunto.

<table>
<thead>
<tr>
<th>Relação/Extrator</th>
<th>Experimento¹</th>
<th>Doses calórico</th>
<th>Doses Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Doses calórico</td>
<td>Doses Mn</td>
</tr>
<tr>
<td>Mn aplicado x Mn extraído</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetato</td>
<td>0,76</td>
<td>0,95</td>
<td></td>
</tr>
<tr>
<td>DTPA</td>
<td>0,59</td>
<td>0,75</td>
<td></td>
</tr>
<tr>
<td>Mehlich</td>
<td>-</td>
<td>0,83</td>
<td></td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>0,29</td>
<td>0,71</td>
<td></td>
</tr>
<tr>
<td>Mn extraído x Teor de Mn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetato</td>
<td>0,74</td>
<td>0,39</td>
<td></td>
</tr>
<tr>
<td>DTPA</td>
<td>0,70</td>
<td>0,52</td>
<td></td>
</tr>
<tr>
<td>Mehlich</td>
<td>0,47</td>
<td>0,47</td>
<td></td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>0,34</td>
<td>0,42</td>
<td></td>
</tr>
<tr>
<td>Mn extraído x mg Mn/planta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetato</td>
<td>0,76</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>DTPA</td>
<td>0,70</td>
<td>0,61</td>
<td></td>
</tr>
<tr>
<td>Mehlich</td>
<td>0,77</td>
<td>0,77</td>
<td></td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>0,33</td>
<td>0,61</td>
<td></td>
</tr>
<tr>
<td>Mn extraído x g M.S.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetato</td>
<td>0,44</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>DTPA</td>
<td>0,47</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Mehlich</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>0,27</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

¹ Coeficientes significativos a, pelo menos, 5% de probabilidade.

... Coeficientes não-significativos.

com a precisão desejada, mostra o melhor desempenho deste extrator em relação aos outros estudados. Se for analisado somente o experimento em que a disponibilidade de Mn foi variada em função da calagem, o acetato mostrou-se superior.

Utilizando-se as regressões das Fig. 3 e 4, e considerando 90 ppm como teor crítico na folha, no experimento de calagem, o teor crítico no solo seria de 60 ppm para o acetato, e 161 ppm para o DTPA. Entretanto, para o ensaio com doses de Mn, o teor crítico para o acetato seria de 200 ppm, e maior que 500 ppm para o DTPA, o que inviabiliza a utilização destes extratores em análises de rotina onde não se conheça o histórico da gleba com relação a calagem.

CONCLUSÕES

1. A soja cv. IAC-9 responde à aplicação de cálcio até a saturação de 60% de bases trocáveis no solo.

2. Quando a disponibilidade de Mn no solo foi modificada pela calagem, o acetato de amônio comportou-se de maneira satisfatória, o que não ocorreu quando os níveis de Mn foram estabelecidos através da aplicação de Mn 80%.

3. De maneira geral, foram estabelecidas correlações significativas entre Mn no solo, Mn aplicado, e doses de cálcio; entretanto, não se conseguiu estabelecer valores críticos no solo, pois a falta de correlações confiáveis com Mn absorvido e produção de matéria seca não recomendam a utilização generalizada destes extratores.

REFERÊNCIAS

Manganês no solo, sua avaliação e toxidez

