INFLUÊNCIA DO PERÍODO DE GESTAÇÃO E DO TAMANHO DA NINHADA NO CRESCIMENTO PONDERAL INTRA-UTERINO DE COELHOS

PAULO ROBERTO CURY² e JOSÉ ROBERTO VELOSO NUNES³

RESUMO - Foi estudado o crescimento intra-uterino de coelhos Norfolk, desde o 20° dia de gestação até a parturirão (31º dia), com base em uma equação teórica ajustada para o peso da ninhada (W). O modelo, de forma exponencial, foi testado usando-se técnica de regressão múltipla após sua linearização. Foram evidenciados efeitos significativos de período de gestação (t) e de tamanho de ninhadas (n). Foi proposta a equação:

\[\hat{W} = \exp(-12.9772).n \exp\{(0.991264 - 0.014007.t - 0.00039.n)t\} \]

(com R² = 0,9932), para descrever o peso da ninhada. A coerência biológica e a interpretação dos coeficientes permitem sugerir que os modelos similares poderão ser usados para o crescimento intra-uterino de outras espécies multiparas com ou sem a inclusão de outros fatores que influenciam a dinâmica do crescimento.

Termos para indexação: parturirão, coerência biológica, espécies multiparas.

EFFECTS OF STAGE OF GESTATION AND LITTER SIZE ON INTRAUTERINE GROWTH IN RABBITS

ABSTRACT - Intrauterine growth of Norfolk rabbits was studied from the 20th day of gestation until the parturition (31st day). A theoretical equation was adjusted for fetuses body weight. The exponential model was tested by stepwise regression technique after linearization. Both stage of gestation (t) and number of fetuses (n) had significant effects on the growth rate. The following equation was proposed to describe the weight of the pups:

\[\hat{W} = \exp(-12.9772).n \exp\{(0.991263-0.014007.t-0.00039.n)t\} \]

(with R² = 0,9932). The biological coherence and the interpretation of the coefficients permitted us to conclude that similar models could be used for other multiparous species. This model can also be used with or without the presence of different factors related to fetal growth.

Index terms: prenatal growth, biological coherence, multiparous species, parturition.

INTRODUÇÃO

As equações de crescimento ponderal ajustadas para diferentes espécies animais podem ser consideradas empíricas e teóricas. As equações teóricas são aquelas que se baseiam em conceitos biológicos para explicar o cres-

¹ Aceito para publicação em 17 de dezembro de 1990
² Biólogo, Prof. - Adj., Fac. Med. Vet. e Zootecnia - UNESP. Caixa Postal 502, CEP 18600 Botucatu, SP.
dentos quando da inclusão de novas variáveis ou da exclusão de uma ou mais variáveis usadas numa primeira etapa, o que dificulta a interpretação da equação.

As equações teóricas, desde que baseadas em modelos adequadamente propostos, mostram-se muito mais estáveis e seus termos apresentam significados biológicos que permitem, entre outras coisas, estudos comparativos entre espécies. A inclusão das variáveis independentes só é feita com base em raciocínio biológico que referencia a maneira como essa variável deve influir no procedimento.

No presente trabalho é proposta uma equação teórica para descrever o crescimento fetal, avaliado pelo peso corporal em coelhos. O modelo proposto é basicamente exponencial e leva em consideração os efeitos do tempo, em dias de gestação (t), e do tamanho da ninhada (n). Usando-se transformação logarítmica a equação foi linearizada e sua forma matemática foi ajustada pelo método de regressão múltipla com o teste dos efeitos de cada variável independente.

Fundamentação teórica: Brody (1927) propôs ser a taxa de crescimento do embrião proporcional ao crescimento já verificado. Assim, \(\frac{dW}{dt} = KW \), onde \(\frac{dW}{dt} \) = taxa de crescimento, \(t \) = tempo de gestação, \(W \) = peso corporal e \(K \) = taxa de crescimento instantâneo.

Da expressão inicial deduziu-se a seguinte relação:

\[
W = W_0 \exp(Kt)
\]

(1)

onde a constante \(W_0 \) representa o peso inicial do feto, ou seja, o peso do ovo fertilizado.

Weinbach (1941) incorporou à equação (1) o chamado “impulso ao crescimento”, propondo:

\[
W = A \exp\{K(t-t')\} - A
\]

(2)

onde \(t' \) é a idade em que \(W=0 \).

As duas equações apresentadas partem da suposição de que a taxa de crescimento instantâneo (K) não varia durante o período intrauterino. No entanto, Laird et al. (1965) observaram que a citada taxa tende a diminuir, à medida que a gestação evolui.

Todos os modelos mencionados demonstram desempenho eficiente para o ajuste de dados de crescimento intra-uterino de diversas espécies, embora teoricamente apresentem uma falha biológica fundamental ao não incorporar em suas expressões matemáticas um fator importante que é o tamanho da ninhada, para espécies multiparas, as quais incluem muitos animais de laboratórios e animais de importância zootécnica. Nunes (1978), num experimento com coelhos, observou que o peso do láparo tende a diminuir com o aumento do tamanho da ninhada. Em suínos, este fato foi referido por Zert (1979). Neste caso, a taxa de crescimento instantâneo deve ser dependente do tamanho da ninhada. Da mesma forma, esta poderia ser afetada por outros fatores tais como o peso inicial, a idade e o estado nutricional da mãe, ou seja, pela influência maternal do ambiente intra-uterino. Como se pode perceber, muitos fatores poderiam ser incorporados ao modelo, o que mostra que as equações (1) e (2) são muito simplistas, principalmente quando aplicadas a espécies multiparas.

Koong & Bradford (1976), levando em conta os aspectos citados, consideraram a taxa de crescimento instantâneo (K) como função linear do tempo (t) de gestação (em dias) e do número (n) de fetos:

\[
K = b_1 + b_2 t + b_3 n
\]

(3.1)

e estabeleceram \(W_0 = b_0 n \)

(3.2)

onde \(W_0 \) é o peso inicial da ninhada e \(b_0 \) é o peso de um ovo. Substituindo os valores \(K \) e \(W_0 \) na equação (1), sugeriram a expressão:

\[
W = b_0 n \exp\{(b_1 + b_2 t + b_3 n)t\}
\]

(4)

para explicar o crescimento fetal, e a testaram para camundongos, com excelentes resultados. No presente trabalho será testado o modelo (4) para o crescimento ponderal de coelhos Norfolk, durante a gestação.
MATERIAL E MÉTODOS

O experimento foi realizado no Setor de Cunicultura da Faculdade de Medicina Veterinária e Zootecnia da UNESP, Campus de Botucatu. Foram utilizadas 31 fêmeas primárias híbridas Norfolk com peso variando de 2.000 a 2.500, e submetidas a condições similares de alojamento, alimentação e manejo. As fêmeas foram cobertas em horas predeterminadas do dia e abatidas na mesma hora quando a gestação completou 20, 23, 26, 29 ou 31 dias. O útero era retirado e os fetos pesados em balança de precisão.

Método estatístico

Com o objetivo de linearizar a equação (4) proposta, considerou-se:

\[\ln(W/n) = b'0 + b1t + b2t^2 + b3 nt \] \hspace{1cm} (5)

onde \(b'0 = \ln b0 \). \hspace{1cm} (6)

Utilizando-se técnicas de regressão multivariada (Hoffmann & Vieira 1977), foram calculados os coeficientes, seus desvios-padrão (s) e as respectivas estatísticas (t) para o teste da significância dos coeficientes. O ajuste da regressão foi verificado pelos valores da estatística F, pelo coeficiente de determinação \(R^2 \) e pelo exame dos resíduos.

RESULTADOS E DISCUSSÃO

Na Tabela 1 são apresentados os valores de tempo de gestação (t), tamanho da ninhada (n), e o peso total da ninhada (Wobs). O crescimento ponderal da ninhada foi estudado considerando-se, o tempo de gestação e o tamanho da ninhada.

A equação ajustada foi:

\[\ln(W/n) = -12,9772 + 0,991264.t - 0,014007.t^2 - 0,00039 . nt \] \hspace{1cm} (7)

com coeficiente de determinação \(R^2 = 0,9932 \) (F=1310,89) \(p < 0,001 \). Os desvios-padrão das estimativas dos coeficientes \(b_1, b_2 \) e \(b_3 \) foram: \(s_1=0,425556, s_2=0,008308, s_3=0,00118 \). O teste de significância dos coeficientes for-
Na Tabela 1 são apresentados os valores estimados (West) para o peso da ninhada, utilizando-se a equação (8), bem como a percentagem de erro das estimativas ((Wobs - West) x 100/Wobs). Com excessão de quatro casos, todas as percentagens de erro foram inferiores a 15%.

Na equação (8) ajustada, b'0 = ln bo = -12,9772 e, portanto bo = 23,12 - 10^7 é a estimativa do peso do ovo fertilizado. Este valor pode ser confrontado com os valores de: bo = 6x10^7 g em camundongos (Koong & Bradford 1976), bo = 4x10^7 g em camundongos (Boyd & Hamilton 1952), bo = 7,60x10^7 g em ratos (Curi et al. 1989).

O coeficiente b1 = 0,991264 representa a taxa inicial de crescimento relativo instantâneo do peso total da ninhada, que diminui a uma taxa de 0,014007 por dia de gestação e a uma taxa de 0,000390 por animal a mais na ninhada. Em ratos, Curi et al. (1989) obtiveram, respectivamente, os valores: 1,113660 para taxa inicial, 0,017171 por dia de gestação e 0,000698 por animal a mais na ninhada.

Considerando a duração de 31 dias de gestação em coelhos, o peso total estimado da ninhada na parição será:

\[\hat{W} = 73,058245 \cdot n \cdot \exp (-0,01209 \cdot n) \] (9)

e o peso individual médio estimado

\[\frac{\hat{W}}{n} = \hat{W}_i = 73,058245 \cdot \exp (-0,01209 \cdot n) \] (10)

isto é, o peso médio individual do recém-nascido diminui exponencialmente a uma taxa de 0,01209 para cada animal a mais na ninhada. O decréscimo do peso individual, com o aumento da ninhada, já havia sido constatado por Nunes (1978) em coelhos, e por Zert (1979) em porcos.

O peso total da ninhada pode ser representado graficamente como função do tempo de gestação para valores particulares do tamanho (n) de ninhada. (Fig. 1, com n = 4, 8 e 12).

De maneira análoga, o peso total (W) da ninhada pode ser representado como função do tamanho da ninhada para valores particulares do tempo de gestação. (Fig. 2, para t = 26 e 31 dias).

Crozier (1940), utilizou uma equação empírica da forma: W = a . n^K para relacionar o peso da ninhada (W) de camundongos ao tamanho da ninhada (n), obtendo valores dos coeficientes a e K no intervalo 1,52 < a < 1,76 e 0,83 < K < 0,95.

Com o propósito de comparar resultados, Koong & Bradford (1976), usaram a expressão por eles ajustada para estimar os pesos de ninhadas de camundongos ao nascer, considerando ninhadas com tamanhos de dois a quatrozes. Com os valores de W, assim calculados, usados como se fossem valores observados, ajustaram a equação empírica na forma proposta por Crozier (1940) e obtiveram:

\[\hat{W} = 1,6 \cdot n^{0.929}, \text{ com } r^2 = 0,999 \]

Para dados de ratos, Curi et al. (1989), considerando ninhadas com um mínimo de 2 e um

FIG. 1. Peso estimado (\(\hat{W}\)) da ninhada, em gramas, como função do tempo de gestação (t) para ninhadas com 4, 8 e 12 dias em coelhos.
máximo de 16 animais, e usando procedimento similar ao descrito, obtiveram \(\hat{W} = 6,05.n^{0,899} \). Para coelhos, usando-se ninhadas com tamanho variando de dois até doze animais, obteve-se: \(\hat{W} = 75,97 . n^{0,932} \) \((r^2 = 0,999)\). Comparando-se as equações ajustadas para peso de ninhada de camundongos, ratos e coelhos, verifica-se que o valor de K para as espécies, situa-se no intervalo proposto por Crozier (1940). O que muda é o valor do coeficiente “a” que aumenta com o tamanho da espécie.

Weinbach (1941) propôs uma equação exponencial para explicar o peso individual (Wi) como função do tempo (t) de gestação, sem levar em conta o tamanho da ninhada. Usando a equação (2):

\[
Wi = A . \exp \{k(t-t')\} = A \text{, para ratos, } k=0,454 \\
A = 0,106 \text{ e } t'=12,09
\]

Ainda para ratos, Curi et al. (1989) obtiveram:

\[
\hat{W}i = 0,110 . \exp \{0,422(t-12,0)\} - 0,110 \quad (11)
\]

com \(r^2 = 0,996 \).

Com os dados de coelhos foram obtidos:

\[
\hat{W} = 14,0 . \exp \{0,140(t-9)\} - 14,0 \quad (12)
\]

com \(r^2 = 0,997 \). No entanto, a aparente concordância entre valores observados e ajustados para estes dados de coelhos pode ser questionada, pois, para o ajuste da equação (12) foram utilizados os valores médios de Wi para as ninhadas, em cada tempo de gestação, e a taxa de erro para 20 e 23 dias de gestação foi próxima de 10%, decrescendo à medida que aumentou o tempo de gestação.

Portanto, quanto mais precoce a idade gestacional, maior a taxa de erro ao estimar o peso individual pela equação (12), o que é consequência de não se levar em conta o tamanho (n) da ninhada.

CONCLUSÃO

Os aspectos discutidos evidenciaram haver uma base teórica segura, bem como coerência biológica, para o ajuste da equação (7), que apresentou bons resultados quando aplicada para camundongos, ratos e coelhos. Este modelo de crescimento intra-uterino pode ser usado com a incorporação de novas variáveis, para espécies animais multíparas.

REFERÊNCIAS

CURI, P.R.; QUEIROZ, S.S.; AMORIM, A.L.T.; BRUNO, S.N. Crescimento intra-uterino de ratos como função do tempo de gestação e do

FIG. 2. Peso estimado (\(\hat{W} \)) da ninhada, em gramas, como função do tamanho da ninhada (n) para tempos de gestação de 26 e 31 dias, em coelhos.

