EFEITO DA CONVIVÊNCIA DE *ECHINOCLOA CRUS-GALLI* (L.) BEAUVR (CAPIM-ARROZ) COM PLANTAS DE ARROZ EM DIFERENTES NÍVEIS DE NITROGÊNIO E FÔSFORO¹

HÉLIO GARCÍA BLANCO, ROBERTO A. ARÉVALO², SOYAKO CHIBA³ e IZABEL P. DE SORDI⁴

RESUMO - Foram conduzidos, ao ar livre, em caixas com 47 kg de solo, dois experimentos para determinar os efeitos do capim-arroz (*Echinochloa crus-galli* (L.) Beauv.) no crescimento e produção de plantas de arroz (*Oryza sativa* L.). Utilizando-se o fatorial como delineamento experimental, foram estudadas as variáveis adubação nitrogenada x densidade populacional de capim-arroz (1º experimento) e adubação fosfatada x densidade populacional de capim-arroz (2º experimento). Os resultados demonstraram que as adubações (N ou P₂O₅) não tiveram qualquer influência na convivência entre as populações de arroz e capim-arroz. Por outro lado, o capim-arroz se mostrou altamente prejudicial ao arroz, em todas as medidas de crescimento avaliadas: peso seco e verde da parte aérea, perfilhamento, número e peso das panículas do arroz, o que mostra que os prejuízos aumentaram em função do aumento da densidade populacional do capim-arroz.

Termos para indexação: ervas daninhas, cereais, competição.

EFFECTS OF BARNYARDGRASS ON RICE PLANTS AT DIFFERENT LEVELS OF NITROGEN AND PHOSPHORUS FERTILIZERS

ABSTRACT - Two out-of-door experiments were carried out in boxes having 47 kg of soil to determine the effects of *Echinochloa crus-galli* (L.) Beauv. (barnyardgrass) on growth and yield of rice plants. The following variables were studied in a factorial combination: nitrogen fertilization x barnyardgrass population density, and phosphate fertilization x barnyardgrass population density. The results showed that fertilizations (N or P₂O₅) had not influenced the interaction weed x crop. At all densities, the weed reduced the phytomass, tillering, number and weight of panicles of rice plants. All growth parameters of rice plants were decreased with increasing weed density and a linear regression was the best fit for these results.

Index terms: weed, weed-crop competition.

INTRODUÇÃO

¹ Aceito para publicação em 12 de novembro de 1990
² Eng.-Agr., Dr., Seção de Herbicidas, Inst. Biológico. Cai-xa Postal 70, CEP 13001 Campinas, SP. Bolsista do CNPq.

Pesquisas têm demonstrado que infestações pesadas de *E. crus-galli* podem remover de 60% a 80% do N do solo em áreas cultivadas com arroz, reduzindo o perfilhamento, o número de panículas, altura, peso e número de grãos por panícula da planta cultivada (Holm et al. 1977). Smith & Shaw (1966), citado por Burga & Tozani (1980), observaram que 30 e 150 plantas/m² de *E. crus-galli* reduziram o rendimento do arroz irrigado em 18% e 36%, respectivamente.

No Brasil, *E. crus-galli* tem sido encontrada infestando, além do arroz, outras culturas, como algodão e amendoim (Blanco 1975).

As perdas por competição, que *E. crus-galli* impõe no rendimento agrícola do arroz em condições brasileiras, têm sido apontadas...
como sendo de 50% (Ishiy & Lovato 1974), e variando de 16% a 80% em função da densidade populacional de infestação (Andrade 1982).

Kleining & Noble (1969) afirmam que a adubação da cultura de arroz com P favorece o capim-arroz, que aumenta os seus efeitos sobre a cultura. Em Taiwan, as reduções do rendimento do arroz por E. crus-galli foram maiores em solos de maior fertilidade (Matsunaka 1970).

Embora existam estudos de convivência de populações de E. crus-galli com plantas de arroz, determinando perdas significativas no rendimento da cultura, não existem estudos na interação de densidades populacionais com adubação NP. Por isso, foram realizados dois experimentos, procurando determinar os efeitos da convivência de plantas de arroz com diferentes graus de infestação de E. crus-galli e a influência da adubação nitrogenada e fosfatada nessa relação biótica.

MATERIAL E MÉTODOS

Os experimentos foram conduzidos na Estação Experimental de Campinas, em condições climáticas naturais, em caixas de amianto de 30 x 47 e 30 cm de profundidade, utilizadas como parcelas experimentais, contendo 49 kg de solo franco-argilo-arenoso (Tabela 1). Sempre que se fez necessário, as caixas foram irrigadas.

O delineamento experimental foi o fatorial (adubação x densidade populacional de capim-arroz), distribuído em blocos ao acaso, com quatro repetições.

O primeiro experimento foi instalado em 25 de outubro de 1985, empregando-se como variáveis do fatorial três níveis de N (30, 60 e 90 kg/ha\(^{-1}\)) e quatro níveis de infestação de capim-arroz (zero, duas, quatro e seis plantas/caixa). O solo foi adubado com o equivalente ao dobro da fórmula 4-18-8 kg/ha\(^{-1}\), utilizando-se como fonte o sulfato de amônio, o superfosfato simples e o cloreto de potássio. A adubação nitrogenada correspondente ao fatorial foi realizada em cobertura, 45 dias após a emergência do arroz.

No segundo experimento, instalado em 10 de outubro de 1986, o fatorial foi constituído de duas doses de P (40 e 80 P\(_2\)O\(_5\) kg/ha\(^{-1}\)), além da dose da formulação básica, e de seis níveis populacionais de capim-arroz (zero, uma, duas, três, quatro e cinco plantas/caixa). A adubação básica empregada em todas as parcelas, por ocasião do plantio, foi 10-40-20, utilizando-se os mesmos adubos do experimento anterior, e 30 kg/ha\(^{-1}\) de N, em cobertura, 45 dias após a emergência da cultura.

Nos dois experimentos a cultivar do arroz foi a IAC 165, na lotação de quatorze plantas/caixa (primeiro experimento) e dez plantas/caixa no segundo experimento.

Na avaliação dos efeitos dos tratamentos foram realizadas as seguintes medidas de crescimento, tanto para as plantas de arroz quanto para as de capim-arroz: peso seco e verde da parte aérea, número de perifílias e número de panículas. Para as plantas da cultura, foi realizada, também, contagem do número de grãos em dez panículas (Experimento 1) ou o peso seco de 100 grãos de arroz (Experimento 2).

TABELA 1. Características físicas e químicas do solo.

<table>
<thead>
<tr>
<th>Físicas (*)</th>
<th>Argila 22</th>
<th>Silte 16</th>
<th>Areia fina 12</th>
<th>Areia grossa 0,6</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>M.O. (%)</td>
<td>pH 6,9</td>
<td>K 0,58</td>
<td>Ca 12,1</td>
</tr>
<tr>
<td>Químicas (**)</td>
<td>resina 3,0</td>
<td>CaCl(_2)</td>
<td>Mg 2,2</td>
<td>H(^+)Al(^+3) 1,2</td>
</tr>
<tr>
<td></td>
<td>ug/cm(^3) 100</td>
<td>meq./100 cm(^2), T.F.S.A.</td>
<td>S 14,9</td>
<td>T 16,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V 93</td>
</tr>
</tbody>
</table>

(*): Físicas: Determinadas pela Seção de Física do Solo, Instituto Agronômico, SP.

(**): Químicas: Determinadas pela Seção de Fertilidade do Solo, Instituto Agronômico, SP.

Os experimentos foram conduzidos até o amadurecimento das cariópses do arroz e do capim-arroz, que se deu em 24.02.86 e 04.03.87, respectivamente.

As análises de variância foram aplicadas para os dados originais em peso, e após a transformação para raiz quadrada dos dados em número, utilizando-se o nível de 5% de probabilidade, tanto para o teste F como o de Tukey, de comparação de médias.

RESULTADOS E DISCUSSÃO

As Tabelas 2, 3, 4 e 5 apresentam os resultados da convivência de plantas de arroz com capim-arroz, sob níveis diferentes de adubação nitrogenada (Tabelas 2 e 3) ou fosfatada (Tabelas 4 e 5), seja em relação aos efeitos sobre o crescimento e produção do arroz (Tabelas 2 e 4) seja em função das plantas de capim-arroz (Tabelas 3 e 5).

Inicialmente, observa-se que a variável adubação não teve influência nos resultados, pois o valor F, em ambos os casos, não foi significativo. Por esta razão, as comparações dos efeitos para a variável densidade de capim-arroz, foram realizadas utilizando-se os valores médios das doses da adubação nitrogenada ou fosfatada.

O capim-arroz se mostrou altamente prejudicial às plantas de arroz, em qualquer das medidas de crescimento avaliadas: peso verde e seco da parte aérea, perfilhamento, número e peso das panículas (Tabelas 2 e 4). Observa-se que, mesmo a mais baixa densidade populacional da erva daninha, uma planta/caixa, que representa sete plantas/m² (Tabela 4), dimi-

TABELA 2. Efeitos da convivência de plantas de capim-arroz, em diferentes níveis de adubação nitrogenada, nas medidas de crescimento de plantas de arroz. Os dados são médias de 4 repetições.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Parte aérea</th>
<th>Perfilhamentos</th>
<th>Panículas</th>
<th>10 panículas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (kg/ha⁻¹)</td>
<td>peso verde (g)</td>
<td>peso seco (g)</td>
<td>número (V x)</td>
</tr>
<tr>
<td>Arroz x capim-arroz (densidade populacional)</td>
<td>12,6a</td>
<td>86,1a</td>
<td>9,0a</td>
<td>24,9a</td>
</tr>
<tr>
<td>14</td>
<td>30/60/90*</td>
<td>1.237,9a</td>
<td>305,7a</td>
<td></td>
</tr>
<tr>
<td>14 x 2</td>
<td>30/60/90</td>
<td>485,9b</td>
<td>86,2b</td>
<td>9,0b</td>
</tr>
<tr>
<td>14 x 4</td>
<td>30/60/90</td>
<td>264,6bc</td>
<td>54,6b</td>
<td>7,6b</td>
</tr>
<tr>
<td>14 x 6</td>
<td>30/60/90</td>
<td>214,8c</td>
<td>46,4b</td>
<td>7,0b</td>
</tr>
</tbody>
</table>

Análise da variância (resumo)

F (tratamentos)	68,9*	79,4*	21,5*	27,5*	23,3*	6,4*
F (densidade de capim-arroz)	243,1*	280,3*	71,9*	97,9*	79,0*	18,5*
Regressão linear	589,3*	608,6*	186,6*	223,5*	209,2*	52,8*
Regressão 2ª grau	132,1*	207,2*	28,0*	66,2*	26,4*	2,6n.s.
Desvios	7,8*	25,0*	1,1n.s.	4,1n.s.	1,5n.s.	-
F (adubação N)	2,2n.s.	6,3*	1,3n.s.	0,5n.s.	1,5n.s.	2,1n.s.
F (densidade x adubação)	4,1*	3,2*	3,1*	1,2n.s.	2,7*	1,9n.s.
d.m.s.	260,4	63,1	2,5	32,4	2,4	8,8
c.v. (%)	18,9	20,6	11,3	41,8	17,6	18,7

Médias seguidas de mesma letra, dentro de cada coluna, são semelhantes entre si, ao nível de 5% de probabilidade pelo teste de Tukey.

* Dados médios para as doses 30, 60 e 90 kg.ha⁻¹ de N, em razão do valor F para essa variável não ter sido significativo.
nuiu significativamente o crescimento e a produção do cereal. No primeiro experimento, quando a série de densidade se iniciou com duas plantas/caixa, esses resultados também se repetiram. Pela análise de regressão, verifica-se que os resultados, de um modo geral, são explicados por equações lineares e quadráticas, sendo a regressão de 1º grau mais ajustada pelo fato de os valores de teste F serem bem maiores. O fato de a equação do 2º grau ter sido significativa se deve, provavelmente, à competição intra-específica nos tratamentos com maior densidade populacional, o que provocou, proporcionalmente, uma diminuição nos efeitos, à medida que se aumentou a população. Esta situação é bem evidente no experimento com adubação nitrogenada (Tabelas 2 e 3), onde os acréscimos na população de capim-arroz não alteraram as medidas de crescimento da erva daninha (Tabela 3). Por outro lado, no experimento com adubação fosfatada, onde a lotação das caixas foi menor, os efeitos para o desenvolvimento do capim-arroz foram traduzidos apenas pela regressão linear (Tabela 5).

Esses resultados concordam, no que se refere à queda de produção do arroz em função do aumento da densidade populacional do capim-arroz, com os relatados por Holm et al. (1977), em nível de pesquisa mundial. No Brasil, Andrade (1982) verificou que infestações de cinco indivíduos/m² de capim-arroz reduziram em 16% o rendimento do arroz, e à medida que o grau de infestação aumentou até 80 e até 100 plantas/m², as perdas foram da ordem de 80%.

A influência da adubação nos resultados da convivência do capim-arroz, imprimindo maior capacidade de competição à erva daninha (Kleining & Noble 1969, Matsunaka 1970), no entanto, não se confirmaram. É possível que as concentrações de nutrientes disponíveis

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Parte aérea</th>
<th>Perfilhos</th>
<th>Panículas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arroz x capim-arroz</td>
<td>N (kg/ha⁻¹)</td>
<td>peso verde (g)</td>
<td>peso seco (g)</td>
</tr>
<tr>
<td>(densidade populacional)</td>
<td>30/60/90</td>
<td>11,346,8</td>
<td>3,715,8</td>
</tr>
<tr>
<td>14 x 2</td>
<td>30/60/90</td>
<td>11,572,7</td>
<td>3,446,2</td>
</tr>
<tr>
<td>14 x 4</td>
<td>30/60/90</td>
<td>12,908,5</td>
<td>4,246,7</td>
</tr>
</tbody>
</table>

Análise da variância (resumo)

<table>
<thead>
<tr>
<th></th>
<th>F (tratamentos)</th>
<th>F (densidade de capim-arroz)</th>
<th>Regressão linear</th>
<th>Desvios</th>
<th>F (adubação N)</th>
<th>F (densidade x adubação)</th>
<th>d.m.s.</th>
<th>c.v. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,9 n.s.</td>
<td>1,0 n.s.</td>
<td>-</td>
<td>-</td>
<td>0,8 n.s.</td>
<td>0,8 n.s.</td>
<td>-</td>
<td>23,7</td>
</tr>
</tbody>
</table>

Médias seguidas de mesma letra, dentro de cada coluna, são semelhantes entre si, ao nível de 5% de probabilidade.

* Dados médios para as doses 30, 60 e 90 kg.ha⁻¹ de N, em razão de o valor F para essa variável não ter sido significativo.

TABELA 4. Efeitos da convivência de plantas de capim-arroz, em dois níveis de adubação fosfatada, nas medidas de crescimento de plantas de arroz. Os dados são médias de 4 repetições.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Parte aérea</th>
<th></th>
<th>Panículas</th>
<th></th>
<th>100 grãos</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N (kg/ha⁻¹)</td>
<td>peso verde (g)</td>
<td>peso seco (g)</td>
<td>número (V x)</td>
<td>peso seco (g)</td>
</tr>
<tr>
<td>Arroz x capim-arroz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(densidade populacional)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>40/80*</td>
<td>205,3a</td>
<td>71,4a</td>
<td>4,4a</td>
<td>50,3a</td>
<td>5,4a</td>
</tr>
<tr>
<td>10 x 1</td>
<td>40/80</td>
<td>147,3b</td>
<td>64,2ab</td>
<td>3,7b</td>
<td>37,7b</td>
<td>5,0b</td>
</tr>
<tr>
<td>10 x 2</td>
<td>40/80</td>
<td>117,7c</td>
<td>56,6abc</td>
<td>3,7b</td>
<td>28,3c</td>
<td>4,8b</td>
</tr>
<tr>
<td>10 x 3</td>
<td>40/80</td>
<td>97,8cd</td>
<td>52,0bc</td>
<td>3,2c</td>
<td>26,0c</td>
<td>4,5c</td>
</tr>
<tr>
<td>10 x 4</td>
<td>40/80</td>
<td>79,6d</td>
<td>44,1c</td>
<td>2,9c</td>
<td>21,2c</td>
<td>4,3c</td>
</tr>
<tr>
<td>10 x 5</td>
<td>40/80</td>
<td>89,0d</td>
<td>50,2c</td>
<td>3,3c</td>
<td>25,3c</td>
<td>4,4c</td>
</tr>
</tbody>
</table>

Análise da variância (resumo)

F (tratamentos) 26,3* 4,0* 13,8* 1,3* 14,2* 0,7n.s.
F (densidade de capim-arroz) 56,9* 7,4* 28,1* 32,2* 30,4* 0,9n.s.
Regressão linear 237,8* 31,3* 107,4* 124,9* 138,4* -
Regressão 2° grau 44,8* 3,7* 22,6* 34,5* 11,3* -
Desvios 0,6n.s. 0,6n.s. 3,5* 0,6n.s. 0,9n.s. -
F (adubação P₂O₅) 2,3n.s. 0,7n.s. 0,4n.s. 0,8n.s. 0,1n.s. 2,4n.s.
F (densidade x adubação) 0,5n.s. 1,2n.s. 2,1n.s. 1,4n.s. 0,8n.s. 0,3n.s.
d.m.s. 26,6 15,5 0,4 8,0 0,3 8,0
C.V. (%) 14,3 18,2 7,7 16,9 4,4 12,9

Médias seguidas de mesma letra, dentro de cada coluna, são semelhantes entre si, ao nível de 5% de probabilidade pelo teste de Tukey.

* Dados médios para as doses 40 e 80 kg.ha⁻¹ P₂O₅ em razão de o valor F para essa variável não ter sido significativo.

TABELA 5. Efeitos da convivência de plantas de arroz com plantas de capim-arroz, em diferentes níveis de adubação fosfatada, nas medidas de crescimento do capim-arroz. Os dados são médias de 4 repetições.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Parte aérea</th>
<th></th>
<th>Panículas</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>P₂O₅ (kg/ha⁻¹)</td>
<td>peso verde (g)</td>
<td>peso seco (g)</td>
</tr>
<tr>
<td>Arroz x capim-arroz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(densidade populacional)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 x 1</td>
<td>40/80*</td>
<td>55,2c</td>
<td>16,0c</td>
<td>1,8d</td>
</tr>
<tr>
<td>10 x 2</td>
<td>40/80</td>
<td>82,3bc</td>
<td>26,6b</td>
<td>2,7c</td>
</tr>
<tr>
<td>10 x 3</td>
<td>40/80</td>
<td>92,8ab</td>
<td>29,6b</td>
<td>2,9bc</td>
</tr>
<tr>
<td>10 x 4</td>
<td>40/80</td>
<td>102,2ab</td>
<td>31,8ab</td>
<td>3,2b</td>
</tr>
<tr>
<td>10 x 5</td>
<td>40/80</td>
<td>119,2a</td>
<td>38,1a</td>
<td>3,7a</td>
</tr>
</tbody>
</table>

Análise da variância (resumo)

F (tratamentos) 5,8* 8,4* 36,1* 6,3* 5,9*
F (densidade de capim-arroz) 12,0* 16,9* 80,0* 12,4* 12,0*
TABELA 5. Continuação.

<table>
<thead>
<tr>
<th>Tratamentos</th>
<th>Parte aérea</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Peso verde (g)</td>
<td>Peso seco (g)</td>
<td>Número (V x)</td>
<td>Peso seco (g)</td>
</tr>
<tr>
<td>Arroz x capim-arroz (densidade populacional)</td>
<td>P₂O₅</td>
<td>46,3*</td>
<td>62,6*</td>
<td>303,7*</td>
<td>48,4*</td>
</tr>
<tr>
<td></td>
<td>(kg/ha⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regressão linear</td>
<td>Desvios</td>
<td>0,6n.s.</td>
<td>1,7n.s.</td>
<td>8,4*</td>
<td>0,4n.s.</td>
</tr>
<tr>
<td></td>
<td>F (adubação P₂O₅)</td>
<td>0,4n.s.</td>
<td>1,1 n.s.</td>
<td>0,1n.s.</td>
<td>0,4n.s.</td>
</tr>
<tr>
<td></td>
<td>F (densidade x adubação)</td>
<td>0,9n.s.</td>
<td>1,7n.s.</td>
<td>1,3n.s.</td>
<td>1,6n.s.</td>
</tr>
<tr>
<td></td>
<td>d.m.s.</td>
<td>28,3</td>
<td>8,1</td>
<td>0,3</td>
<td>9,1</td>
</tr>
<tr>
<td></td>
<td>c.v. (%)</td>
<td>21,4</td>
<td>19,6</td>
<td>7,7</td>
<td>23,7</td>
</tr>
</tbody>
</table>

Médias seguidas de mesma letra, dentro de cada coluna, são semelhantes entre si, ao nível e 5% de probabilidade.

* Dados médios para as doses 40 e 480 kg.ha⁻¹ de P₂O₅, em razão do valor F para essa variável não ter sido significativo.

para as plantas tenham sido insuficientes em relação à lotação de plantas por caixa, seja pelas perdas por drenagem forçada, que é maior nas condições trabalhadas que no campo, ou mesmo pelas quantidades utilizadas. Fageria et al. (1982) determinaram que para igualar as condições de campo a adubação deve ser cerca de oito vezes maior que a recomendada em culturas comerciais, o que não aconteceu nos experimentos aqui relatados.

CONCLUSÕES

1. Plantas de capim-arroz (*Echinochloa crus-galli* (L.) Beauv.) convivendo juntas com plantas de arroz prejudicam o crescimento e produção destas últimas, seja no seu peso verde e seco aéreo, seja no perfilhamento, no número ou no peso das panículas. Estes efeitos são traduzidos por regressão linear, em função do aumento da densidade populacional da erva daninha.

REFERÊNCIAS

