ENVELHECIMENTO ARTIFICIAL DE SEMENTES DO PINHEIRO DO PARANÁ

ADSON RAMOS e JOSÉ GERALDO DE ARAÚJO CARNEIRO

RESUMO - O envelhecimento rápido de sementes do pinheiro do Paraná Araucaria angustifolia (Bert.) O. Ktze resultou em um progressivo decréscimo em sua germinação e velocidade de germinação. Foram realizadas análises bioquímicas em vários períodos de envelhecimento. Os açúcares totais das sementes aumentaram. Nitrogênio e proteínas não apresentaram alterações e a quantidade de amido decresceu. A enzima amilase apresentou aumento de atividade. Houve acréscimos em altura e peso seco de mudas. Este estudo indica que a técnica de envelhecimento precoce pode ser usada para que se conheçam os mecanismos que se associam com a deterioração de sementes florestais em armazenamento.

Termos para indexação: Araucaria angustifolia, velocidade de germinação, análises bioquímicas, proteínas, amido.

ARTIFICIAL AGING OF PARANA PINE SEED

ABSTRACT - Artificial aging, at 42º ± 2ºC and 100% relative humidity, of Parana pine seeds (Araucaria angustifolia) resulted in a progressive decrease in their emergence and speed emergence. Various biochemical analyses were performed at various periods of aging. Increasing periods of aging resulted in an increase of sugar total. Nitrogen and protein contents did not change, whereas starch quantities decreased. The amylase activity, height and dry matter weight of the aerial part of seedlings increased with increasing periods of aging. The results of this study indicate that the technique of accelerated aging can be useful to provide further knowledge of the mechanisms associated with the deterioration of forest tree seeds in storage.

Index terms: Araucaria angustifolia, speed emergence, biochemical analyses, proteins, starch.

INTRODUÇÃO

O envelhecimento é um dos maiores desafios científicos do universo, e consequentemente, o número de biologistas interessados em pesquisas moleculares, bioquímicas e fisiológicas associadas com envelhecimento em animais e plantas é cada vez maior (Chauhan et al. 1984).

Quando sementes velhas são plantadas, observa-se um gradual declínio da germinação, precedido pela perda de vigor, acarretando um menor desenvolvimento das plantas. Isto é consequência da deterioração das sementes (Chauhan et al. 1984).

O processo de deterioração das sementes é muito complexo e não se conhecem precisamente seus detalhes bioquímicos e fisiológicos (Roberts 1979).

Todas estas indicações podem ou não ocorrer ao mesmo tempo em uma amostra de sementes, e algumas delas são peculiares a se-
mentes de certas espécies de plantas (Abdul-Baki & Anderson 1972).

Durante os últimos anos, a base bioquímica do envelhecimento em sementes tem atraiçoado muitos pesquisadores (Abdul-Baki 1969, Anderson 1973) e muitas mudanças têm sido detectadas em sementes em deterioração.

As maiores mudanças que ocorrem durante a deterioração de sementes são incrementos nos ácidos graxos gordurosos livres (Glass & Geddes 1959, Milner & Geddes 1946, Pomeranz 1969) e fosfatos inorgânicos (Ching & Scholcraft 1968, Glass & Geddes 1959), decrescimos nos lipídios neutros (Pomeranz 1969); fosfolipídios (Koostra & Harrington 1969, Pomeranz 1969); açúcares solúveis totais (Ching & Scholcraft 1968, Glass & Geddes 1959 e 1960, Linch et al. 1962).

MATERIAL E MÉTODOS

As pinhas foram coletadas na Floresta Nacional de Três Barras, estado de Santa Catarina, longitude 50º21’W, latitude 26º08’S, altitude de 765 m e clima, segundo Köppen, do tipo Cfb, ou seja, subtropical úmido sem estação seca, com temperatura média do mês mais frio superior a 10ºC.

Após a debulha, os pinhões foram selecionados manualmente, sendo eliminados aqueles manchados, defeituosos e pequenos, assim como os atacados pela broca Laspeyresia sp.

Para o envelhecimento artificial, as sementes foram submetidas a câmera climática marca “Deco”, previamente regulada a uma temperatura de 43º ± 2ºC e umidade relativa de 100%. As duas prateleiras existentes na câmera receberam suportes laterais e divisões de alumínio, ao meio, de forma a acolherem as sementes para os tratamentos. Para cada tempo de permanência estabelecido foram colocadas 340 se-

mentes, divididas em quatro repetições de 85.

Foram testados quatro períodos de permanência na câmara de envelhecimento, ou seja: 0, 4, 8 e 16 horas.

Cada tratamento foi feito separadamente, devido às limitações de espaço existentes na câmara. Ao final de cada tratamento, esta foi limpa e desinfetada com formol.

Após cada período de permanência na câmara, as sementes foram submetidas a teste de emergência em viveiro.

O índice de velocidade de germinação foi calculado através da fórmula de Throneberry & Smith, apresentada por Bianchetti (1976).

O desenvolvimento das plântulas, representado pelos parâmetros morfológicos altura da parte aérea, diâmetro do colo, peso seco aéreo e percentagem de raiz em relação ao peso seco foram avaliados seguindo metodologia exposta por Carneiro (1980).

O delineamento estatístico utilizado foi o inteiramente casualizado, com quatro repetições.

Os dados em percentagem de emergência foram transformados em arc, sen √%. Na comparação das médias utilizou-se o Teste de Duncan ao nível de α = 0,05.

As análises de variância foram processadas através do Programa Sanest – Sistema de Análise Estatística, do Centro Nacional de Pesquisa Florestal, em Colombo (PR).

RESULTADOS E DISCUSSÃO

Aos aumentos nos períodos de envelhecimento corresponderam reduções nas percentagens e índices de velocidade de emergência obtidas (Tabela 1). Resultados semelhantes foram obtidos por Pitel (1980) com Pinus banksiana Lamb e Quercus rubra L., e por Ramos (1980) com Parapiptadenia rigida (Benth) Brenan, Tabeuba cassinoides (LAM) DC e Jacaranda micrantha Cham.

Os teores de umidade das sementes com e sem casca apresentaram um aumento com o aumento do tempo em envelhecimento devido

TABELA 1. Valores médios de diversos parâmetros de sementes e mudas de *Araucaria angustifolia*, obtidos após o envelhecimento precoce das sementes em vários períodos.

<table>
<thead>
<tr>
<th>Parâmetros</th>
<th>Tempo de permanência das sementes em câmara de envelhecimento (horas)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Percentagem de emergência</td>
<td>98,98 A</td>
</tr>
<tr>
<td>I.V. emergência</td>
<td>0,451 A</td>
</tr>
<tr>
<td>T.U. s/casca (%)</td>
<td>42,10 B</td>
</tr>
<tr>
<td>T.U. c/casca (%)</td>
<td>59,06 C</td>
</tr>
<tr>
<td>Proteínas (%)</td>
<td>6,03 A</td>
</tr>
<tr>
<td>Nitrogênio (%)</td>
<td>0,96 A</td>
</tr>
<tr>
<td>Açúcares totais (%)</td>
<td>6,67 C</td>
</tr>
<tr>
<td>Lipídios (%)</td>
<td>1,74 AB</td>
</tr>
<tr>
<td>Amido (%)</td>
<td>83,70 A</td>
</tr>
<tr>
<td>Amilase (+)</td>
<td>0,39 D</td>
</tr>
<tr>
<td>Invertase (+)</td>
<td>34,04 D</td>
</tr>
<tr>
<td>Celulase (+)</td>
<td>2,30 B</td>
</tr>
<tr>
<td>∅ do colo (mm)</td>
<td>3,89 A</td>
</tr>
<tr>
<td>Altura p/aérea (cm)</td>
<td>15,63 B</td>
</tr>
<tr>
<td>Peso seco aéreo (g)</td>
<td>1,15 B</td>
</tr>
<tr>
<td>% Raiz em relação ao peso seco total (g)</td>
<td>26,38 AB</td>
</tr>
</tbody>
</table>

(+) valores em μg/ml/min x 10⁻³ de glicose.
As médias seguidas pela mesma letra não diferem significativamente entre si pelo Teste de Duncan, ao nível de α = 0,05.

à umidade absorvida da atmosfera saturada da câmara. Estes resultados confirmam relatos de McDonald Junior (1977) e Agrawal & Sinha (1980), de que o teor de umidade de sementes influencia o grau de deterioração das sementes submetidas ao envelhecimento precoce.

O amido, principal componente químico em sementes de *Araucaria*, apresentou valores decrescentes com o aumento do período de permanência em envelhecimento. Isto faz supor que o consumo de amido tenha sido provocado por uma respiração mais intensa, devidamente às condições de alta umidade e temperatura que, segundo Kole & Gupta (1982), estimula os processos bioquímicos.

Para os açúcares totais, os resultados apontam acréscimos nas percentagens medidas entre início e final. Estes resultados são semelhantes aos obtidos por Ching (1972) com *Pseudotsuga menziesii* (Mirb). Harrington (1973) menciona o aumento dos açúcares como um sintoma de deterioração.

Como não ocorreram modificações com o nitrogênio (N), também não ocorreram nas proteínas, em cuja determinação utilizaram-se os números obtidos nas determinações de N multiplicado pela constante 6,25 (Association of Official Agricultural Chemists 1980). As sementes de *A. angustifolia* utilizadas no presente experimento apresentaram valores em torno de 0,96% de N, que é uma quantidade muito pequena se comparada com os 4,02% obtidos por Badran et al. (1976) com *Araucaria excelsa*.

A quantidade de lipídios detectada no presente trabalho é semelhante à relatada por Ferreira (1977) e inferior às informações de Zacarias et al. (1961) e Mota & Kramér (1953); as
médias obtidas após 16 horas de envelhecimento foram inferiores às obtidas com sementes não envelhecidas.

A atividade da enzima amilase aumentou com o aumento do período de envelhecimento. Na comparação dos dados iniciais e finais expostos na Tabela 1, observa-se que decresceu a quantidade de amido e aumentou a quantidade de açúcares, resultando da ação desta enzima, o que acarretou decréscimo nas percentagens e índices de velocidade de emergência obtidos. Resultados semelhantes foram obtidos por Monerri et al. (1986), em cotilédones de *Pisum sativum* L., durante a germinação. Para a enzima invertase, observaram-se decréscimos, após um aumento inicial. Para a celulose ocorreu um decréscimo seguido de ligeiros incrementos com o aumento do tempo na câmara de envelhecimento.

Para sementes submetidas ao envelhecimento precoce, as mudas obtidas apresentaram acréscimos em altura da parte aérea com o aumento da permanência das sementes na câmara. Estes resultados discordam dos obtidos por Pitel (1980), com *Pinus banksiana* e *Quercus rubra*.

As médias de peso de matéria seca da parte aérea, obtidas de mudas provenientes de sementes submetidas ao envelhecimento precoce, apresentaram com 8 e 16 horas, maiores valores que os determinados no início.

O diâmetro do colo também foi favorecido com 16 horas de permanência das sementes em envelhecimento, embora não se verifiquem diferenças estatísticas significantes (Tabela 1).

As médias de percentagem de raiz em relação ao peso seco apresentaram uma pequena redução com o aumento do período de envelhecimento das sementes.

CONCLUSÕES

1. A diminuição da qualidade das sementes de *A. angustifolia* está associada a várias alterações bioquímicas, como o catabolismo das reservas armazenadas e mudanças na atividade de enzimas, detectada pela técnica de envelhecimento artificial.

2. Devem ser estudados períodos mais prolongados de envelhecimento precoce, com a finalidade de ajustar o método como meio de investigação da deterioração de sementes desta espécie e consequentes implicações na produção de mudas.

REFERÊNCIAS

POMERANZ, Y. The role of the lipid fraction in growth of cereals and in their storage and processing. Wallerstein Laboratories Communications, v.29, p.17-28, 1969.

