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Genetics/ Original Article

Inclusion of covariables in 
genome‑wide selection models 
for prediction accuracy
Abstract ‒ The objective of this work was to evaluate models using the 
significant single nucleotide polymorphisms (SNPs) detected by marker-
assisted selection and genome-wide association, as a fixed effect in the 
models commonly used in genome-wide selection for F2 population, in 
comparison with models using all SNPs. For all models, the Bayesian ridge 
regression method was used. Comparisons between the models were carried 
out to evaluate the phenotypic and genotypic prediction ability, phenotypic 
accuracy, selection gain, coincidence index, and processing time. Both 
methods failed to accurately identify true quantitative trait loci (QTL). The 
selection based only in the QTL identified by the studied methods elected 
individuals of low genetic value. The use of a genome-wide selection model – 
with the significant SNPs found by the genome-wide association as a fixed 
effect, and the remaining SNPs as a random effect – was the suitable strategy 
to select superior individuals with high accuracy. The introduction of QTL 
already described for a given trait into the genome-wide selection model 
allows of the selection of superior individuals with greater precision.

Index terms: genomic prediction, genome-wide association, marker-assisted 
selection study, prediction accuracy.

Inclusão de covariáveis em modelos de seleção 
genômica ampla para acurácia de predição
Resumo ‒ O objetivo deste trabalho foi avaliar modelos que utilizam os 
nucleotídeos de polimorfismo único significativos (SNPs), encontrados por 
seleção assistida por marcadores e associação genômica, como um efeito 
fixo em modelos comumente utilizados na seleção genômica ampla para 
a população F2, em comparação com o modelo que utiliza todos os SNPs. 
Utilizou-se para todos modelos o método bayesiano de regressão de crista. 
Para as comparações entre os modelos, avaliaram-se a capacidade de 
predição fenotípica e genotípica, a acurácia fenotípica, o ganho de seleção, o 
índice de coincidência e o tempo de processamento. Ambos os métodos não 
conseguiram identificar com precisão os verdadeiros loci de características 
quantitativas (QTL). A seleção baseada apenas nos QTL identificados pelos 
métodos avaliados elegeu indivíduos de baixo valor genético. O uso de um 
modelo de seleção genômica ampla –com os SNPs significativos encontrados 
pela associação genômica como um efeito fixo, e os SNPs restantes como 
um efeito aleatório – foi a estratégia adequada para selecionar indivíduos 
superiores com alta precisão. A introdução de QTL já descritos para uma 
dada característica no modelo de seleção genômica ampla permite a seleção 
de indivíduos superiores com maior precisão.

Termos para indexação: predição genômica, associação genômica ampla, 
seleção assistida por marcadores, acurácia de predição.
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Introduction

Since its inception, plant breeding has been based 
on the visual selection of individuals, that is, the 
selection is based only on phenotypic value. With 
advances in molecular genetics and genomics, other 
new strategies and, consequently, new criteria, have 
been developed to make the breeding cycle faster and, 
the selection of individuals, more efficient. The first 
marker-based method was molecular marker-assisted 
selection (MAS), which is based on the information 
of a probable quantitative trait loci (QTL), in which 
some are identified as responsible for the expression of 
a certain phenotypic characteristic. MAS has shown 
to be efficient for traits governed by few genes with 
large effect. For traits controlled by many small-effect 
genes, this method has proved to be inappropriate 
(Gregorio et al., 2013).

Genome-wide selection (GWS) described by 
Meuwissen et al. (2001) is an alternative to solve the 
limitations found by MAS for quantitative traits. The 
GWS models are based on the estimation of the genomic 
breeding value, using a large number of markers and 
the phenotypic value of the individuals (Meuwissen 
et al., 2001). This genomic breeding value is then used 
for selecting superior individuals. At first, the effects 
of markers are estimated using training population, 
in which individuals are genotyped and phenotyped. 
These marker effects are then used to estimate the 
genomically estimated breeding value (GEBV) in 
the validation populations, in which individuals are 
genotyped and phenotyped. Then, these marker effects 
can be used to estimate the GEBV in a test population 
(population whose individuals are just genotyped).

Another MAS limitation is the need for a linkage 
map that can only be created from structured 
populations. An alternative that becomes possible after 
the development of SNP markers is an association 
mapping. Association mapping has the potential to find 
and map QTL within the genome, besides identifying 
causal polymorphism within genes that may be 
responsible for the difference between two phenotypes 
(Palaisa et al., 2003). Thus, it is developed as a 
method capable of identifying significant QTL from 
a large number of markers covering the entire genome 
known as genome-wide association studies (GWAS) 
(Pritchard et al., 2000).

Although MAS, GWS, and GWAS are distinct 
methods, they have the same ultimate goal that is to 

improve the selection accuracy and help breeders to 
select superior genotypes. An alternative to using 
these methods simultaneously is to consider the QTL 
identified by the MAS and GWAS as a fixed effect, and 
the other markers as a random effect for the original 
GWS model. However, studies that have shown the 
use of these methods simultaneously (Bernardo, 2014; 
Spindel et al., 2015; Arruda et al., 2016) did not take 
into account the effect of heritability on genomic 
prediction. In addition to these, it is important to 
evaluate two more complete models: one using all 
simulated QTL as a fixed effect for the GWS model; 
and other using only the two QTL with the greatest 
effect on the characteristic as fixed effect for the 
GWS. Then, it is necessary to compare them with the 
standard model used in genomic selection (Bayesian 
ridge regression ‒ BRR).

Therefore, the objective of this work was to evaluate 
models, using the significant single nucleotide 
polymorphisms (SNPs) detected by marker-assisted 
selection and genome-wide association as a fixed 
effect in the models commonly used in genomewide 
selection for F2 population, in comparison with the 
Bayesian ridge regression.

Materials and Methods

This study was developed in the laboratory of 
biometrics of the Universidade Federal de Viçosa, 
in the state of Minas Gerais, Brazil, in 2018. An F2 
population was simulated by using the GENE software 
module (Cruz, 2013), which allowed to generate 
information on the genome, genotypes of the genitors, 
controlled crossover populations, and quantitative 
traits data.

A genome consisting of 15 linkage groups was 
performed similarly to that of a diploid species 2n = 2x 
= 30. Each linkage group was simulated with 150 cM, 
consisting of 300 codominant and biallelic markers, 
equally spaced (0.5 cM), totaling 4,500 marks.

Contrasting homozygous parents were simulated, 
for which parent 1 was coded as carrier of an A1 allele 
(received code 2), and parent 2 was coded as carrier 
of the alternative allele A2 (received code 0) for all 
existing markers.

The F2 population was generated from the 
self-crossing of individuals from the F1 population. 
For the formation of the first individual of the F2 
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population, each individual of the F1 population 
produced 5,000 gametes and, when 2 of these gametes 
were found at random, the first individual of the F2 
population was generated. This process was repeated 
until the formation of all individuals in the population.

The simulated F2 population was coded with 0, 
1, and 2, for which 0 corresponded to homozygous 
individuals (A2A2), 1 to heterozygous individuals 
(A1A2), and 2 to homozygous individuals (A1A1), for 
a given locus.

For the simulation of quantitative traits, a value 
corresponding to the probability generated by a 
binomial distribution each trait was used, and it was 
controlled by 100 QTL randomly distributed in the 
genome. The effect of each QTL was defined by 
A1A1=μ + a; A1A2=μ + d; A2A2=μ – a, where: ‘a’ is the 
coded effect of the homozygote, and ‘d’ is the coded 
effect of the heterozygote.

The genotypic value (GV) of each individual was 
defined by the equation, in which PVG is the proportion 
of genetic variance explained by each QTL:

GV PVG QTL xQTL effect
i ii

n
� � ��� / ,

1

The environmental effect (EE) was assumed to 
be uncorrelated with the genotype value and was 
estimated following a distribution N(0,σ2). Heritability 
traits were simulated at 20%, 40%, 60%, and 80%. 
The σg2  was calculated as being the variance of the 
genotypic value of the individuals of F2 population. 
Therefore, the phenotypic value was obtained by

PV = u + GV + EE,

where: u 100 is the mean; and PV is the phenotypic 
value.

After forming the population, the mapping 
process stages followed, starting with the analysis of 
segregation of individual loci. Chi-square (χ2) tests 
were applied to verify if the markers segregated as 
expected in a F2 population. It was also verified if all 
linkage groups were restored, with size, distance, and 
order of the markers, which should make it possible to 
conclude that it was an F2 population with the desired 
simulation properties.

To verify the accuracy of the MAS and GWAS 
methods for finding significant SNPs, a comparison 

was made between the simulated QTL and the QTL 
found by these methods.

The analyses for QTL detection considering 
MAS concepts involved the interval mapping (IM) 
method (Lander & Botstein, 1989). This analysis was 
performed using the package qtl in R. All SNPs whose 
logarithm of odds (LOD) was greater than 3 were 
selected to be used as fixed effect in the GWS model.

The GWS method used was the best linear unbiased 
prediction (BRR) from the Bayesian ridge regression, 
which aims to estimate the effect for each of the 
covariables (markers SNPs) included in the model. The 
BGLR package (Pérez & de los Campos, 2014) was 
used to process the BRR method. This method was 
chosen because in the BGLR package it is possible 
to model fixed effects and random effects, and the 
Bayesian method requires less computational time. 
Seven models of GWS were used, as in the following 
descriptions.

Model 1 (MAS): in this model, the significant SNPs 
found by molecular marker-assisted selection (MAS) 
for each trait under analysis were modeled as fixed. 
The MAS analyses were performed using the ‘cim’ 
function in the qtl package of the R program (R Core 
Team, 2015) with the following equation:

,

where: μ is the genotype mean; β is the effect vector 
of each significant SNP found by the MAS analyses 
(fixed effect); and X is a marker matrix composed only 
of the significant SNPs.

Model 2 (GWAS): in this model, the significant SNPs 
found by the genome-wide association studies (GWAS) 
for each trait under analysis were modeled as fixed. 
The GWAS analyses were performed using the gwas 
function in the rrBLUP package in the R program with 
the following equation:

,

where: μ is the genotype mean; β is the effect vector of 
each significant SNP found by the GWAS (fixed effect) 
analyses; and X is the marker array composed only of 
the significant SNPs.

Model 3 (GWS): in this model, all SNPs were 
modeled as random, using the following equation:

,
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where: μ is the genotype mean; α is the additive effect 
vector of each SNP (random effect); and W is the 
marker array composed of all SNPs.

Model 4 (M_G): in this model, the significant SNPs 
found by MAS, for each trait under analysis, were 
modeled as fixed effect, and the remaining SNPs 
were modeled as random effect, using the following 
equation:

,

where: μ is the genotype mean; β is the effect vector 
of each significant SNP found by the MAS analyses 
(fixed effect); X is the marker matrix composed only of 
the significant SNPs; α is the additive effect vector of 
each SNP (random effect); and W is the marker array 
composed of all nonsignificant SNPs in the MAS 
analyses.

Model 5 (G_G): in this model, the significant SNPs 
found by GWAS, for each trait under analysis, were 
modeled as fixed effect, and the remaining SNPs were 
modeled as random effect by the following equation:

,

where: μ is the genotype mean; β is the effect vector of 
each significant SNP found by the GWAS (fixed effect) 
analyses; X is the marker matrix composed only of 
the significant SNPs; α is the additive effect vector of 
each SNP (random effect); and W is the marker array 
composed of all nonsignificant SNPs in the GWAS 
analyses.

Model 6 (H_G): in this model, the two QTL with the 
greatest effect simulated for each trait under analysis 
were modeled as fixed effect, and the remaining SNPs 
were modeled as random effect using the following 
equation:

,

where: μ is the genotype mean; β is the effect vector 
of the two most significant QTL by the simulation 
process (fixed effect); X is the marker array composed 
only of the two QTL; α is the additive effect vector of 
each SNP (random effect); and W is the marker array 
composed of all SNPs, except for the two QTL with 
the greatest effect on the traits.

Model 7 (Q_G): in this model, all simulated QTL for 
each trait under analysis were modeled as fixed effect, 

and the remaining SNPs were modeled as random 
effect with the following equation:

,

where, μ is the genotype mean; β is the effect vector of 
all QTL (fixed effect); X is the marker array composed 
of all QTL; α is the additive effect vector of each SNP 
(random effect); and W is the marker array composed 
of all SNPs, except for the QTL.

To compare the models proposed in this work, some 
parameters were estimated as phenotypic predictive 
ability (PPA) and genotypic predictive ability (GPA). 
The PPA was achieved by the Pearson correlation 
between the genomically estimated breeding values 
(GEBV) by the models and the phenotypic value. The 
GPA was achieved by the Pearson correlation between 
the GEBV estimated by the models and the genotypic 
value.

Phenotypic accuracy (PA) was calculated as follows:

PA = PPA / (h2)1/2,

where: h2 is the heritability of the trait.
Selection gain (SG %) was estimated using the 

following equation:

SG =100 (SD h2) / mo,

where: SD is the selection differential that was 
estimated as

SD = ms – mo,

where: ms is the mean of the selected individuals; and 
mo is the mean of the initial population. A selection 
percentage of 20% was considered.

The coincidence index (CI) was calculated as 
follows:

CI = 100 (NIS/TN)

where: NIS is the number of individuals selected on 
the basis of the phenotypic value that were the same 
selected on the basis of the GEBV; and TN is the total 
number of selected individuals.

The maximum selection gain (SGmáx) was estimated 
as:

SGmáx = XS-XO
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where: XS is the genotypic mean of the individuals 
selected on the basis of the simulated genetic values 
(true values); and XO is the genotypic mean of the 
original population.

Results and Discussion

The number of QTL found by GWAS was lower 
than those of the simulated total, since out of 100 QTL, 
66 had a significant effect on traits, while the number 
of QTL found by MAS was higher than that of the 
simulated total (Table 1). Few QTL identified by the 
GWAS were actually QTL, which means that most of 
the SNPs identified as QTL were not true QTL. MAS 
was able to identify almost 50% of the simulated QTL, 
but showed a very high number of significant SNPs in 
the wrong position.

The models G_G, GWAS, Q_G, and H_G were 
superior to the other methods for estimating the 
phenotypic predictive ability for all evaluated 
heritabilities (Figure 1). For 60% and 80% heritabilities, 
the MAS and M_G models showed a phenotypic 
predictive ability close to zero, which is much lower 
than those of the other models that had values above 0.4.

The genotypic predictive ability estimated by the 
GWS, G_G, Q_G, and H_G models was higher than 
those estimated by the others (Figure 2) for all evaluated 
heritabilities. The GWAS model was lower than those 
of the MAS and M_G models for low heritability 
(20% and 40%), and higher for high heritability (60% 
and 80%). Genotypic predictive ability increased as 
heritability increased for all evaluated models, except 
for the MAS and M_G ones.

Following the same response observed for 
phenotypic predictive ability, the GWS, G_G, Q_G, 
and H_G models were superior for the phenotypic 
accuracy for all evaluated heritabilities (Figure 3). 
For 60% and 80% heritabilities, the MAS and M_G 
models displayed a phenotypic accuracy close to 
zero, which is much lower than the values of the other 
models which had values above 0.6. The Q_G model 
showed the highest values of phenotypic accuracy for 
heritabilities equal to, or greater than 40%.

In GWAS and G_G models, the accuracy and 
predictive capacity were equal to, or greater than 
the standard GWS model (Figures 1, 2, and 3). This 
happened because in these models the maximum 
number of markers used as fixed effect was 32. The 
same fact was observed in the model H_G, in which 
only the two QTL with the largest effect (Table 1) were 
used as fixed effect in the model.

The use of data obtained using the GWAS analysis 
within the GWS models can provide information on 
the genetic architecture of the studied trait and on 
the population structure being used in the breeding 
program, according to Spindel et al. (2015); these 
authors have shown that the use of significant markers 
found by GWAS, as a fixed effect in GWS models for 
grain yield, plant height, and flowering in rice, can 
show the presence of QTL with higher segregating 
effect in the breeding population, in which these QTL 
can be established as covariates in GWS models to 
improve accuracy. However, when the number of 
QTL is greater than 10, this effect can be contrary, 
that means, a decrease could happen in the value of 
accuracy (Bernardo, 2014). This fact explains why the 
predictive ability (Figure 1 and 2) and the accuracy 
(Figure 3) of the MAS and M_G models were lower 
than those of the others, since more than 10 marks 
were used as fixed effects in these models (Table 1).

Treating a QTL as a fixed effect can increase the 
prediction accuracy of the GWS models. However, if 
QTL is a false positive, it will actually decrease the 
prediction accuracy of the model. In the present study, 
several false positive numbers were observed for the 
MAS and M_G models, evidencing one more factors 
that made these models inferior to the others. Thus, 
it is preferable to treat false positives as random and, 
therefore, have their variance close to zero, instead of 
treating them as fixed, since they strongly influence 
the prediction of genetic values (Arruda et al., 2016). 

Table 1. Number of quantitative trait loci (QTL) detected 
(NQD) and number of QTL detected in the correct position 
(NQDCP) for different heritabilities, by the methods 
of molecular marker-assisted selection (MAS) and 
genome-wide association studies (GWAS).

Model and heritability NQD NQDCP
MAS – h2 = 20% 2.221 52
GWAS – h2 = 20% 7 1
MAS – h2 = 40% 1.807 47
GWAS – h2 = 40% 11 3
MAS – h2 = 60% 1.957 51
GWAS – h2 = 60% 24 5
MAS – h2 = 80% 2.096 52
GWAS – h2 = 80% 27 7
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The Q_G model clearly showed this fact, since, in this 
model, 100 QTL were used as a fixed effect, where 
all QTL had an effect on the traits. In other words, no 

false positive was used as fixed effect, and values of 
predictive ability and accuracy were observed as equal 
to, or higher than the traditional GWS model, in which 

Figure 1. Comparison of the models using phenotypic predictive ability for characteristics with different heritabilities. 
Models: MAS, molecular marker-assisted selection; GWAS, genome-wide association studies; GWS, genome-wide 
selection; M_G, significant SNPs for each trait found by MAS were modeled as fixed effect, and the remaining SNPs were 
modeled as random effect; G_G, significant SNPs for each trait found by GWAS were modeled as fixed effect, and the 
remaining SNPs, as random effect; H_G, the two QTL with the greatest effect simulated for each trait were modeled as fixed 
effect, and the remaining SNPs, as random effect; Q_G, all simulated QTL for each trait were modeled as fixed effect, and 
the remaining SNPs, as random effect.
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all SNPs were used as random effect (Figures 1, 2, 
and 3).

A single gene treated as a fixed effect in the GWS 
using RRBLUP will never be disadvantageous, except 

Figure 2. Comparison of the models using genotypic predictive ability for characteristics with different heritabilities. 
MAS, molecular marker-assisted selection; GWAS, genome-wide association studies; GWS, genome-wide selection; M_G, 
significant SNPs for each trait found by MAS were modeled as fixed effect, and the remaining SNPs were modeled as 
random effect; G_G, significant SNPs for each trait found by GWAS were modeled as fixed effect, and the remaining SNPs, 
as random effect; H_G, the two QTL with the greatest effect simulated for each trait were modeled as fixed effect, and the 
remaining SNPs, as random effect; Q_G, all simulated QTL for each trait were modeled as fixed effect, and the remaining 
SNPs, as random effect.
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for some cases in which the variability explained by 
QTL is less than 10% (Bernardo, 2014). Thus, the 
use of significant QTL found by GWAS and MAS 

methods is more influential in the prediction as greater 
is the effect of these QTL (Spindel et al., 2015). In the 
H_G model, the two QTL used as fixed effect showed 

Figure 3. Comparison of the models via phenotypic accuracy for characteristics with different heritabilities. MAS, molecular 
marker-assisted selection; GWAS, genome-wide association studies; GWS, genome-wide selection; M_G, significant SNPs 
for each trait found by MAS were modeled as fixed effect, and the remaining SNPs were modeled as random effect; G_G, 
significant SNPs for each trait found by GWAS were modeled as fixed effect, and the remaining SNPs, as random effect; 
H_G, the two QTL with the greatest effect simulated for each trait were modeled as fixed effect, and the remaining SNPs, 
as random effect; Q_G, all simulated QTL for each trait were modeled as fixed effect, and the remaining SNPs, as random 
effect.
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7.96% effect on the traits; this result show that the use 
of only two QTL with a greater effect on the trait can 
estimate values of prediction and accuracy similar to 
those of the models using a larger number of markers 
as fixed effect, as seen in the Q_G, G_G and M_G 
models (Figures 1, 2, and 3). This fact is important 
since, for many characteristics, some QTL of great 
effect are already known and, this way, these QTL can 
be introduced as a fixed effect in the GWS models. For 

Figure 4. Comparison of the models using coincidence index for characteristics with different heritabilities (H).

instance, in soybean, 18 QTL have been identified for 
tolerance to aluminum (Sharma et al., 2011), as well as 
one QTL for Asian soybean rust (Kim et al., 2012), and 
four QTL for drought tolerance (Carpentieri-Pipolo 
et al., 2012). Thus, all these previously identified QTL 
can be used as a fixed effect in the GWS model.

The model GWAS showed the greatest coincidence 
index for characteristics of low heritability (20%) 
(Figure 4). However, for characteristics with 60% and 
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80% heritabilities, the GWS, G_G, Q_G, and H_G models 
displayed higher coincidence indices. As the heritability 
of the characteristic increased, the coincidence index 
also increased, for all evaluated models, except for the 
MAS and M_G ones that remained practically constant 
(ranging from 20% to 40%).

Selection gain estimated by MAS and M_G models 
showed higher estimates for gain (Figure 5). However, 
the selection gain was overestimated by the MAS and 
M_G models for 60% and 80% heritabilities when 
compared to the maximum selection gain (Table 2), 
which was greater in the lower the heritability of the 
characteristic.

The models GWAS and MAS were observed as 
faster, considering processing time, than the others for 
all evaluated characteristics (Figure 6). However, as 
heritability increased, the processing time in the MAS 
model also increased, making it more time-consuming 
than the GWAS model. The other models had a very 
similar processing time, except for M_G that was the 
most time-consuming model.

The large number of markers considered as fixed 
effect in the model due to false positives also affected 
the selection gain (Figure 5 and Table 1), which was 
overestimated in the MAS and M_G models. However, 
GWAS and G_G models, in which the number of 
markers considered as fixed effect did not exceed 32, 
the genetic gain was not overestimated (Figure 5 and 
Table 2), as well as in the Q_G and H_G models. The 
coincidence index was another parameter affected by 
the number of false negative QTL as fixed effect in the 
model. For the MAS and M_G models, the coincidence 
index was lower than those of the other models and 
decreased as the heritability of the characteristic 
increased, since the number of false positives also 
increased (Figure 4). Therefore, knowing the genetic 
architecture of the trait under study can be important 
in the application of the correct GWS model and, 
consequently, to increase accuracy.

Considering the genetic architecture of the traits 
through the GWAS and MAS analyses can greatly 
improve the accuracy of the GWS models, since the 
higher effect of the qtl will be treated irrespective of 
the markers with smaller or no effect. Using simulated 
data, Bernardo (2014) verified that in traits with 
moderate to high heritability, QTL with effect greater 
than 30% as a fixed effect in the GWS model can 
increase the relative efficiency based on the selection 

gain from 7% to 21%. However, when QTL with less 
than 5% effect was used in the model, the relative 
efficiency decreased, showing that markers that 
explain a small fraction of the genetic variance should 
be treated as random effect in the GWS model. As in 
present work, almost all genes that were considered 
as fixed effect explained a very small fraction of the 
genetic variance (less than 5%), no significant increase 
of predictive ability, accuracy, and gain with selection 
was observed and, in many cases, the value of these 
estimates decreased (Figure 1, 2, 3, and 5). Thus, the 
genetic architecture difference between the different 
species, as well as the genetic architecture difference 
between the characteristics of economic importance 
within the main species will influence the accuracy 
of the GWS models (Spindel et al., 2015). This fact is 
important for most major agricultural crops. In a study 
with GWAS analysis of maize, McMullen et al. (2009) 
found innumerable genes of lower effect controlling 
the main agricultural characteristics of this species. 
In rice, many large effect QTL have been found by 
GWAS and MAS (Chen et al., 2014).

For the characteristics governed by a smaller 
number of genes with higher effect, MAS and M_G 
models can be superior to the other models, since they 
can capture a large part of the total genetic variance 
present in only a few QTL (Arruda et al., 2016). 
Spindel et al. (2015) verified that MAS was superior to 
GWS for flowering time in rice. This trait is governed 
by few genes with large effect, whereas GWS was 
superior to MAS for grain yield, characteristic that is 
governed by a large number of genes of small effect. 
Arruda et al. (2016) compared the MAS, GWS, and 
M_G models in six characteristics associated with 
resistance to fusarium in wheat, and found that GWS 
had a predictive accuracy (0.4–0.9) higher than that 
of the MAS model (<0.3); however, when they used 
the QTL found in the MAS as a fixed effect in the 
GWS model (M_G model), the prediction accuracy 
was higher than that of the GWS model. Therefore, 
the performance of each method depends very much 
on the characteristic to be analyzed and its genetic 
structure, thus, a deep knowledge is necessary on the 
characteristic in study, to choose the most appropriate 
model, in order to increase its predictive ability and 
prediction accuracy.

An important feature of Bayesian ride regression 
(BRR), the standard model used in the present study, 
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Figure 5. Comparison of the models using selection gain for characteristics with different heritabilities. MAS, molecular 
marker-assisted selection; GWAS, genome-wide association studies; GWS, genome-wide selection; M_G, significant SNPs 
for each trait found by MAS were modeled as fixed effect, and the remaining SNPs were modeled as random effect; G_G, 
significant SNPs for each trait found by GWAS were modeled as fixed effect, and the remaining SNPs, as random effect; H_G, 
the two QTL with the greatest effect simulated for each trait were modeled as fixed effect, and the remaining SNPs, as random 
effect; Q_G, all simulated QTL for each trait were modeled as fixed effect, and the remaining SNPs, as random effect.

Table 2. Maximum selection gain for the characteristics 
evaluated with different heritabilities.

Parameter h2 = 20% h2 = 40% h2 = 60% h2 = 80%

 XO 151.27 147.71 151.05 153.38
XS 77.88 101.43 115.42 124.41
GSmax (%) 48.52 31.33 23.59 18.89
Parameter: h2, heritability; XO, genotypic mean of the population; XS, 
genotypic mean of the selected individuals; GSmax, maximum selection gain.

is that all marks have the same genetic variance. 
However, this is practically impossible to happen in 
the characteristics of agronomic importance. Thus, 
markers that have an effect on the trait may be 
underestimated, and markers that have no effect may 
be being overestimated. Considering this context, 
placing the high-effect QTL indicated by MAS and 
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Figure 6. Comparison of models using processing time, in seconds, for characteristics with different heritabilities. MAS, 
molecular marker-assisted selection; GWAS, genome-wide association studies; GWS, genome-wide selection; M_G, 
significant SNPs for each trait found by MAS were modeled as fixed effect, and the remaining SNPs were modeled as 
random effect; G_G, significant SNPs for each trait found by GWAS were modeled as fixed effect, and the remaining SNPs, 
as random effect; H_G, the two QTL with the greatest effect simulated for each trait were modeled as fixed effect, and the 
remaining SNPs, as random effect; Q_G, all simulated QTL for each trait were modeled as fixed effect, and the remaining 
SNPs, as random effect.

GWAS, as a fixed effect in the GWS model, ensures 
that these QTL are estimated more realistically, 
which consequently increases the predictive ability 

and accuracy of the model (Spindel et al. 2015). This 
underestimation of the QTL with large effect may 
affect the selection response for several cycles in 
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the breeding program (Combs & Bernardo, 2013). 
The prediction accuracy increased, when QTL were 
treated as a fixed effect for rust resistance in wheat, 
according to Rutkoski et al. (2014). In a comparison 
between the GWS and MAS models, for 13 agronomic 
traits in wheat, Heffner et al. (2011) verified that the 
phenotypic and genotypic predictive abilities were 
28% higher in the GWS. However, some studies show 
that, depending on the trait, an increase of accuracy 
can not occur when fixed effects are placed in the 
model, observed by Rutkoski et al. (2014) in a report 
on wheat resistance to fusarium. Besides, the authors 
verified that the accuracy in MAS was superior to that 
of GWS. Zhao et al. (2014) compared GS and MAS for 
plant height in wheat and verified that the predictive 
ability was the same.

The use of a genome-wide selection model with 
the significant markers found by the GWAS as a 
fixed effect, and the other markers as random effect, 
is a good strategy to select superior individuals 
with high accuracy in F2 populations. Moreover, the 
introduction of QTL previously described as a fixed 
effect in the selection model, for the characteristic 
under study, allows of the selection of superior 
individuals more accurately. The results of the 
present study allow to choose the best GWS models 
to be applied more accurately and precisely in F2 
population in breeding.

Conclusions

1. The introduction of QTL already described for 
a given trait into the genome-wide selection model 
allows of the selection of superior individuals with 
greater precision.

2. The use of a genome-wide selection model with 
the significant markers found by the GWAS as a fixed 
effect, and the other markers, as random effect, is a 
good strategy to select superior individuals with high 
accuracy in the F2 populations.
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