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Statistics/ Original Article

Maize productivity 
based on a distributional 
regression approach
Abstract – The objective of this work was to propose the use of traditional 
models based on distributional regression models to analyze maize 
productivity. The experiment was carried out in an alpha lattice design, with 
three replicates and 24 blocks. Data used refer to 102 maize plants from 
the permanent collection of the Centro de Desenvolvimento Científico e 
Tecnológico para a Agricultura of the Universidade Federal de Lavras. For 
the maize productivity evaluation, the following explanatory variables were 
used: weight of 100 seed, plant height, ear height, and days to maturation. The 
initial analyses involved the fitting of four distributions (gamma, generalized 
gamma, inverse Gaussian, and generalized inverse Gaussian) to the data, in 
which the gamma distribution showed the best fit based on the Akaike and 
Bayesian information criteria (AIC and BIC). Cob height has a considerable 
influence on the productivity variability because as cob height increases, 
the productivity variability decreases, whereas the covariates weight of 100 
seed and days to maturity explain the increasing average of the productivity. 
The residual analysis shows that the model based on gamma distribution is 
suitable for explaining the data and providing useful insights for agricultural 
research and practice.

Index terms: Zea mays, gamma regression, traditional models.

Produtividade do milho com base em uma 
abordagem de regressão distribucional
Resumo – O objetivo deste trabalho foi propor a utilização de distribuições 
tradicionais com base em modelos de regressão distribucional, para analisar 
a produtividade do milho. O experimento foi realizado em um delineamento 
alfa látice, com três repetições e 24 blocos. Os dados usados referem-se a 
102 plantas de milho que são parte da coleção permanente do Centro de 
Desenvolvimento Científico e Tecnológico para a Agricultura, da Universidade 
Federal de Lavras. Para a avalição da produtividade do milho utilizaram-se as 
seguintes variáveis explicativas: peso de 100 sementes, altura da planta, altura 
da espiga e dias para a maturação. As análises iniciais envolveram o ajuste de 
quatro distribuições (gama, gama generalizada, inversa Gaussiana e inversa 
Gaussiana generalizada) aos dados, em que a distribuição gama foi a que melhor 
se ajustou, com base nos critérios de informação de Akaike e bayesiano (AIC 
e BIC). Notavelmente, a altura da espiga tem uma influência considerável 
sobre a variabilidade da produtividade porque conforme a altura aumenta, a 
produtividade diminui, enquanto as covariáveis peso de 100 sementes e dias 
para a maturação explicam a média crescente da produtividade. A análise 
residual mostra que o modelo baseado na distribuição gama é adequado para 
explicar os dados e fornecer informações úteis para a pesquisa e a prática 
agrícolas.

Termos para indexação: Zea mays, regressão gama, modelos tradicionais.
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Introduction

Maize (Zea mays) is an agricultural crop from the 
Poaceae family that holds significant economic and 
social importance, being one of the most used and 
cultivated crops worldwide. According to Erenstein 
et al. (2022), the high socioeconomic role of this crop 
is attributable to several aspects, including its high 
productive potential, its use in both human and animal 
consumption, and its essential position in agribusiness 
as a raw material for numerous sectors. However, 
among the 117 countries producing maize globally, 
Brazil ranks 33rd in average grain productivity 
(5,550 kg ha-1), which is considered substantially low 
in comparison with that of the USA (11,110 kg ha-1) 
(USDA, 2022).

Several authors have applied traditional statistical 
regression models to analyses of maize productivity, as 
following described. Seffrin et al. (2018) used this method 
to predict maize productivity in Paraná state, Brazil, 
from 2012 to 2014. Chipenete et al. (2022) employed this 
model to fit spatial data related to areas cultivated with 
improved maize seed in Mozambique. Furthermore, 
Bruning et al. (2023) applied this methodology to 
evaluate the development and production of maize 
crops subjected to different magnesium doses by foliar 
application. Soares et al. (2022) researched the effects 
of silicon on maize productivity and earworm damage 
reduction on this crop, in plantations in Teresina, Brazil. 
Macedo et al. (2023) used this methodology to analyze 
the physical and physiological quality and on the 
productivity of 'UFVM 100 Nativo' maize seed, derived 
from fields fertilized with various levels of poultry litter 
as top-dressing.

The problem of using the above-mentioned model 
lies in the empirical assumption that productivity is 
completely symmetrical, and that it can be described by 
the Gaussian distribution, which may not necessarily 
hold true. Furthermore, covariates are sought solely to 
influence the mean productivity; however, it may be of 
interest to examine those that affect variability in this 
response. In this context, the distributional regression 
models, firstly introduced as generalized additive 
models for location, scale, and shape (GAMLSS) 
(Rigby & Stasinopoulos, 2005) may be an interesting 
alternative, since, depending on the complexity of the 
data, they can detect which covariates affect not just the 
mean of the response, but also all of its properties (for 
instance, variability). Studies by Agudo-Domínguez 

et al. (2022) and Righetto et al. (2019) show the 
growing use of GAMLSS in agricultural applications. 

The objective of this work was to propose the use of 
traditional models based on distributional regression 
models, to analyze maize productivity. 

Materials and Methodss

The experiment was carried out between November 
2021 and March 2022, in the experimental area 
of Muquém Farm (21°12'S, 45°59'W, at 918.84 m 
altitude), at the Centro de Desenvolvimento Científico 
e Tecnológico para a Agricultura of the Universidade 
Federal de Lavras, in the municipality of Lavras, in the 
state of Minas Gerais, Brazil. The soil is a Latossolo 
Vermelho-Amarelo, with gently undulating relief, 
according to the Brazilian soil classification system 
(Santos et al., 2018), which corresponds to an Oxisol. 
According to the Köppen-Geiger’s classification, the 
climate is rainy temperate (Cwa), with temperatures 
of 23.74°C, and precipitation of 232.56 mm during 
the trial (Lavras Meteorological Station: 21°13'34"S, 
44°58'47"W).

Information regarding the 102 full-sib maize 
progenies resulting from the crossing of two base 
populations (A and B), which were originally obtained 
from two commercial single-cross hybrids, was used. 
The plants were organized in an alpha lattice design, 
with 3 replicates and 24 blocks. Sowing took place on 
November 16, 2021, with seeding density at 4 seed per 
linear meter in plots of 4 m length, and row spaced at 
0.6 m apart. Fertilization was applied at planting with 
250 kg ha-1 of fertilizer comprising 8% N, 28% P2O5, 
and 16% K2O. A top-dressing fertilization with 200 
kg ha-1 of granulated urea-N (45% N) was applied 25 
days after sowing.

The candidate explanatory variables that were 
collected in addition to maize productivity, the 
response variable of interest, as well as their possible 
values are presented (Table 1). All information on the 
dataset can be found in Pedro et al. (2023).

For the statistical modelling process, in general, 
if follows a distribution D(θk), where θk represents a 
parameter vector, then GAMLSS can be defined as

g X s xk k k k k jk jkj

Jk
( ) ,� � �� � � � ��� 1
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where: gk(.), k = 1,2,3,4, denotes a known monotonic 
function that relates the distribution parameter 
θk to its predictor ηk; Xk is a design matrix; βk is 
a vector of parameters; and sjk(.) are smoothing 
functions, for instance, P-splines (Eilers et al., 
2015) used to explain the relationship between the 
covariate xjk and θk (Rigby & Stasinopoulos, 2005). If 

s xjk jkj

Jk � � ��� 1
0,  then we have the full parametric 

GAMLSS (Righetto et al., 2019).
The first stage in modelling maize productivity is 

to choose a probability distribution D that would best 
describe its behavior. Thus, exploratory marginal 
analyses and residuals are widely used (Nakamura 
et al., 2017). Among the more than 100 distributions 
available in the gamlss.data package of the R software 
(R Core Team, 2023), the four distributions that best 
suited the response and that were thus considered in 
this study were the gamma (GA), generalized gamma 
(GG), inverse Gaussian (IG), and generalized inverse 
Gaussian (GIG) distributions.

To facilitate the interpretation of GAMLSS, 
the utilized parameterization of the distributions 
frequently differs from those generally reported in 
the literature (Rigby et al., 2019). In the GAMLSS 
framework, the probability density function (PDF) of 
the GA distribution is given by

f
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where: μ>0 is the mean of the distribution, and σ>0 is 
a dispersion parameter. Furthermore, the PDF of a GG 
distribution can be expressed as
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where: μ>0 is a scale parameter, σ>0 is a dispersion 
parameter; and ν>0 or ν<0 is a shaper parameter, and 

θ=1/(σ2ν2). Note that if ν=0, we have the log-normal 
distribution (Rigby et al., 2019). Moreover, the PDF of 
an IG distribution is defined as
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where: μ>0 is the mean of the distribution; and σ>0 
is a dispersion parameter. Finally, the PDF of a GIG 
distribution is given by
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where: μ>0 is the mean of the distribution; σ>0 is a 
dispersion parameter; −∞< ν <∞ is a shape parameter;
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 is the Bessel function of the second kind.
Given the possibility of including different 

explanatory variables in any of the regression 
structures, distinct variable selection approaches can 
be used for their selection. The most popular of them 
is strategy A (Ramires et al., 2021), a stepwise-based 
procedure. Other research using this method can be 
found in Righetto et al. (2019).

All fitted models were evaluated using the 
generalized Akaike information criterion – GAIC, 
given by 

GAIC I dfp( ) ,� �� � � �2


where: Îp is the fitted log-likelihood function; df if the 
effective degrees of freedom of the fitted model; and κ 
is a penalty. The smaller is the GAIC(κ), the better will 
be the model fit. When κ = 2, GAIC is reduced to the 
Akaike information criterion (AIC) (Akaike, 1974); 
and when κ = log(n), where n is the sample size, GAIC 
reduces to the Bayesian information criterion (BIC) 
(Schwarz, 1978).

After fitting the model, normalized quantile 
residuals, commonly displayed in worm plots, were 
used to test the model assumptions; further details can 
be found in Stasinopoulos et al. (2023).

Table 1. Covariates of maize (Zea mays) data set from the 
experiment carried out between November 2021 and March 
2022, in the municipality of Lavras, MG, Brazil.

Variable Range
Weight of 100 seed (g) 25.40 ‒ 42.20 
Plant height (cm) 190.00 ‒ 301.70
Cob height (cm) 86.67 ‒ 200.00
Days to maturity 105.00 ‒ 143.00 
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Results and Discussion

Some descriptive statistics of the response maize 
productivity show that the mean and median response 
were 9,433.00 kg ha-1 and 9,321.00 kg ha-1, respectively, 
with a standard deviation of 2,224.32 kg ha-1 (Table 2).

The marginal response distribution (Figure 1) was 
right-skewed (skewness equals 0.42), with slightly larger 
and heavier tails than the Gaussian distribution (kurtosis 
equals 0.46). Based on these characteristics, the GA, 
GG, GIG, and IG distributions are potential candidates 
for modelling the dataset under consideration.

After selecting the potential distribution to be 
considered in the model, pairwise relationships 
between the response variable and each of the candidate 
explanatory variables were observed (Figure 2).

The relationship between variables shows the 
weight of 100 seed and productivity, which has a 
positive correlation (Figure 2 A). In other words, larger 
seed may contain more nutrient reserves, which might 
benefit the plant development, potentially improving 
initial growth and, consequently, maize productivity. 
A positive correlation was also observed between both 
variables in an evaluation for the effect of applying grass 
inoculant in combination with a plant bioactivator, in 
the presence and absence of nitrogen top-dressing, on 
the agronomic development parameters and second-
crop maize productivity (Cordeiro Júnior et al., 2019).

There was an apparent positive relationship 
between plant height and productivity and a noticeable 
dispersion (Figure 2 B). Our findings are consistent 
with those by Aman et al. (2020), who studied the 
phenotypic and genotypic relationships between grain 
yield and other morphological characteristics; these 
authors observed positive correlations between both 
variables and also between the weight of 100 seed and 
the response indicated in Figure 2 A. Furthermore, it 
is worth noting that plant height in most observations 
exceeds 220 cm, a finding also verified by Liu et al. 
(2017), who evaluated high-yielding maize plants with 
a potential yield of 22.5 Mg ha-1, and also found a plant 

height value above 220 cm. Similarly, Doggalli et al. 
(2024), in their assessment of genetic diversity among 
50 maize inbred lines found heights similar to those 
observed here.

The relationship between cob height and 
productivity showed a slight positive correlation with 
notable variability (Figure 2 C). Similar results were 
also found by Souza et al. (2020), in a study comparing 
the performance of different maize cultivars in 
organic systems; these authors found slight positive 
correlations between cob height and productivity 

Figure 1. Maize (Zea mays) productivity from the 
experiment carried out between November 2021 and 
March 2022, in the municipality of Lavras, MG, Brazil: A, 
histogram; B, box plot.

Table 2. Descriptive statistics for maize (Zea mays) 
productivity (kg ha-1) from the experiment carried 
out between November 2021 and March 2022, in the 
municipality of Lavras, MG, Brazil.

Mean Median Standard deviation Skewness Kurtosis
9,433.00 9,321.00 2,224.32 0.42 0.46
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(0.39), as well as between plant height and response 
(0.47), suggesting that an increase in both covariates 
boosts productivity. Additionally, most observations 
show that the cob height reaches 120 cm, which is 
consistent with the findings by Melo et al. (2018), who 
assessed the performance of maize genotypes under 
water stress, in the southern part of Tocantins state, 
Brazil, and observed cob heights similar to those 
observed in the present work.

The relationship between days to maturity and 
productivity with some variation was observed as 

exceeding 120 days (Figure 2 D). Similar results were 
also observed in the estimation of water demand and 
crop coefficients in maize intercropped with brachiaria, 
with values greater than 120 days to maturity (Fietz 
et al., 2020).

Regarding the statistical modelling based on 
the GAMLSS framework, we proceeded with our 
analysis by selecting the covariates for each regression 
structure, in the four fitted distributions using strategy 
A. The values of AIC and BIC for the best-fitted model 
for each of these distributions are presented (Table 3).

Figure 2. Relationship between maize (Zea mays) productivity and explanatory variables: A, weight of 100 seed; B, plant 
height; C, cob height; and D, days to maturity.
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The best-fitted distribution was GA (with AIC and 
BIC values of 5,503.397, and 5,530.317, respectively), 
indicating that it provided the best fit for predicting 
maize productivity (Table 3). The final fitted GAMLSS 
based on the GA distribution can be expressed as
µ =exp{7.2863+s[weight of 100 seeds]+s[days to 
maturity]} and σ =exp{-0.4143-0.0077[cob height]}.

It can be seen that smoothing functions were only 
necessary to model the average of maize productivity 
( µ ). According to Ramires et al. (2019), we usually 
do not perform tests for such functions. In these 
circumstances, only the effect of the function on the 
parameter of the response distribution is graphically 
examined (Figure 3).

To explain the average productivity based on the 
covariate weight of 100 seed, a smoothing function 
has been fitted (Figure 3 A). It is clear that the 
function accurately captured the behavior observed 
(Figure 2 A); namely, an increasing average up to 
approximately 38 g, followed by a much slower growth 
is evident. This finding is consistent with prior studies 
by Cordeiro Júnior et al. (2019), Devasree et al. (2020), 
and Verma et al. (2020).

The average productivity remained constant until 
approximately 120 days, after which it begun to 
increase (Figure 3 B). This behavior is similar to the 
one indicating that productivity positively varies after 
120 days of maturity (Figure 2 D). Such results are 
similar to those obtained by Fietz et al. (2020), but 
differ from those reported by Pranay et al. (2022), who 
found a nonsignificant negative correlation. Linear 
relationships as imposed by traditional regression 
models (or simply computing the Pearson’s correlation 

coefficient) would not adequately explain the 
relationships (particularly in Figure 3 B). Regarding 
the fitted model to explain the dispersion parameter 
( σ ), we can see that the cob height was significant 
at 5% probability, showing its influence on maize 
productivity variability. For each additional centimeter 
of the cob height, there is an expected decrease of units, 
that is, units in the variability of maize productivity, 
whose pattern can be observed (Figure 2 C).

The worm plot obtained from the normalized 
quantile residuals of the final fitted model (Figure 4) 

Table 3. Akaike (AIC) and Bayesian (BIC) information 
criteria for the best-fitted generalized additive models 
for location, scale, and shape (GAMLSS), based on each 
of the four distributions under study from the experiment 
carried out between November 2021 and March 2022 in the 
municipality of Lavras, MG, Brazil.

Distribution AIC BIC
GA 5,503.397 5,530.317
GG 5,504.024 5,534.989
GIG 5,506.865 5,539.168
IG 5,519.702 5,539.466

GA: gamma distribution. GG: generalized gamma distribution. GIG: 
generalized inverse Gaussian distribution. IG: inverse Gaussian 
distribution.

Figure 3. Smoothing function fitted to explain maize (Zea 
mays) mean productivity by the following covariates: A, 
weight of 100 seed; and B, days to maturity.
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shows that all observations fall within the 95% 
confidence interval, and no clear pattern is evident. 
Therefore, we may conclude that the GAMLSS based 
on the GA distribution is appropriate for explaining 
maize productivity and produces reliable inferences. 
For future research, additional features, such as 
ear length, cob diameter, number of ears per plant, 
and anthesis-silking interval should be considered. 
Furthermore, this methodology is easily adaptable to 
other cultivars, varieties, and crops.

Conclusions

1. The generalized additive models for location, 
scale, and shape (GAMLSS), also known as 
distributional regression models, are appropriate for 
evaluating maize (Zea mays) productivity data. 

2. After evaluating four distributions with the 
stepwise-based procedure strategy A, the gamma 
distribution is the most suitable for representing the 
response, providing a precise description of the dataset 
under review.

3. This model gives useful insights for modelling 
both the average and dispersion of the productivity, 
allowing of a clear and objective interpretation of the 
nature of the response variable.

Figure 4. Normalized quantile residuals obtained from the 
fitted generalized additive models for location, scale, and 
shape (GAMLSS) based on the gamma distribution (GA).

4. The importance of cob height in the modelling of 
the dispersion parameter emphasizes its major effects 
on productivity variability, with each additional 
centimeter of this covariate related to 0.77% decrease 
in the productivity variability, whereas both the weight 
of 100 seed and days to maturity are important to 
explain the productivity mean. 

5. The study of the worm plot ‒ created from 
normalized quantile residuals ‒ validates the ability of 
the fitted GAMLSS based on the gamma distribution 
to effectively describe, interpret and predict the data.
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