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Remote Sensing/ Original Article

Data mining applied to feature 
selection methods for aboveground 
carbon stock modelling
Abstract – The objective of this work was to apply the random forest (RF) 
algorithm to the modelling of the aboveground carbon (AGC) stock of a tropical 
forest by testing three feature selection procedures – recursive removal and the 
uniobjective and multiobjective genetic algorithms (GAs). The used database 
covered 1,007 plots sampled in the Rio Grande watershed, in the state of 
Minas Gerais state, Brazil, and 114 environmental variables (climatic, edaphic, 
geographic, terrain, and spectral). The best feature selection strategy – RF with 
multiobjective GA – reaches the minor root-square error of 17.75 Mg ha-1 with 
only four spectral variables – normalized difference moisture index, normalized 
burn ratio 2 correlation texture, treecover, and latent heat flux –, which represents 
a reduction of 96.5% in the size of the database. Feature selection strategies assist 
in obtaining a better RF performance, by improving the accuracy and reducing 
the volume of the data. Although the recursive removal and multiobjective GA 
showed a similar performance as feature selection strategies, the latter presents 
the smallest subset of variables, with the highest accuracy. The findings of this 
study highlight the importance of using near infrared, short wavelengths, and 
derived vegetation indices for the remote-sense-based estimation of AGC. The 
MODIS products show a significant relationship with the AGC stock and should 
be further explored by the scientific community for the modelling of this stock.

Index terms: forest management, genetic algorithm, random forest.

Mineração de dados aplicada a métodos 
de seleção de variáveis para a modelagem 
de estoque de carbono acima do solo
Resumo – O objetivo deste trabalho foi aplicar o algoritmo “random forest” 
(RF) à modelagem do estoque de carbono acima do solo (CAS) de uma floresta 
tropical, por meio da testagem de três procedimentos de seleção de variáveis: 
remoção recursiva e algoritmos genéticos (AGs) uniobjetivo e multiobjetivo. Os 
dados utilizados abrangeram 1.007 parcelas amostradas na bacia hidrográfica 
do Rio Grande, no estado de Minas Gerais, Brasil, e 114 variáveis ambientais 
(climáticas, edáficas, geográficas, de terreno e espectrais). A melhor estratégia 
de seleção de variáveis – a RF com AG multiobjetivo – chega ao menor erro 
quadrático de 17,75 Mg ha-1 com apenas quatro variáveis espectrais – índice 
de umidade por diferença normalizada, textura de correlação do índice de 
queimada por razão normalizada 2, cobertura arbórea e fluxo de calor latente 
–, o que representa redução de 96,5% no tamanho do banco de dados. As 
estratégias de seleção de variáveis ajudam a obter melhor desempenho da RF, ao 
melhorar a acurácia e reduzir o volume dos dados. Embora a remoção recursiva 
e o AG multiobjetivo mostrem desempenho semelhante como estratégias de 
seleção de variáveis, esta último apresenta menor subconjunto de variáveis, 
com maior precisão. As descobertas deste trabalho destacam a importância 
do uso de infravermelho próximo, comprimentos de onda curtos e índices de 
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vegetação derivados para a estimativa de CAS baseada em 
sensoriamento remoto. Os produtos MODIS mostram relação 
significativa com o estoque de CAS e precisam ser melhor 
explorados pela comunidade científica para a modelagem 
deste estoque.

Termos para indexação: manejo florestal, algoritmo 
genético, floresta aleatória.

Introduction

Forest habitats are a notable carbon pool. Because 
of this importance, several scientific efforts seek to 
quantify the aboveground carbon (AGC) stock from 
native forests (Safari et al., 2017; Silveira et al., 2019), 
which is a crucial information to assess mitigation 
policies. Studies on this topic still face many challenges 
to predict AGC stocks, especially in large areas of 
moist tropical forests. For this reason, remote sensing 
techniques have been widely applied to the modelling 
of aboveground biomass and carbon stock, using a 
large set of spatial variables.

In the literature, there is a consensus on the use of 
spectral variables to support the attaining of satisfactory 
accuracy, since spectral and environmental variables 
(climate, soil, and surface relief) are commonly 
correlated with field data at a regional/global scale 
(Lu et  al., 2016). In turn, surveys involving large 
areas show challenges compatible with their size, as 
dependent variable modelling demands the use of a 
special statistical or computational approach to get 
around these dimensional problems.

Machine learning methods can optimally assist the 
modelling complex task involving big data. Advances 
in machine learning techniques have contributed 
many valuable tools to the scientific community 
encompassing gain in novel insights within the 
temporal and spatial carbon variation (Mascaro et al., 
2014). Random forest (RF) is a machine-learning 
algorithm that has been successfully used because 
it improves the modelling and accuracy of estimates 
of different ecological systems (Mascaro et al., 2014; 
Safari et al., 2017). Moreover, the RF can be used with 
the recursive removal method (Silveira et  al., 2019) 
for feature selection in large datasets, boosting their 
final model performance. The feature selection is not 
a trivial task. Thus, computational methods help with 
the modelling task, mainly if the number of predictor 
variables exceeds the human analysis limit. A high-

dimensional data set may lead to lower estimate 
accuracy, due to irrelevant and redundant variables, 
noise problems, and complexity to understand the 
pattern.

The feature selection procedure selects a subset 
according to mathematical methods and criteria 
(Rodriguez-Galiano et al., 2018). In this scenario, the 
integration between RF and genetic algorithm (GA) 
can bring benefits to feature selection, in which the 
use of the GA can guide the solution searching in this 
procedure (Kumar & Sahoo, 2017). GA derives from 
theories of the biological evolutionary process and 
natural selection to solve a series of combinatorial 
problems, providing an adaptive search engine for the 
optimal solution based on the principle of “survival 
and reproduction of the fittest”. Generally speaking, 
these algorithms randomly create several solutions to a 
problem, from which those with the best performance 
will be selected to give rise to new solutions (by 
genetic operators: crossover and mutation), this 
process is repeated several times until a satisfactory 
solution is found (Kumar & Sahoo, 2017). Despite 
the robust performance achieved by GA in the search 
for optimized solutions to combinatorial problems, 
its application has not been explored yet for remote-
sense-based AGC modelling.

This study evaluated the potential of database 
shrinkage, and its effects on the estimate accuracy, to 
define the best predictor subset of variables to explain 
the AGC stock in the Rio Grande watershed, located 
in the south of the state of Minas Gerais, Brazil. 
Therefore, the present study attempts to answer the 
following research questions: which feature selection 
procedure has the best predictive performance?; 
what are the variables that affect most the AGC stock 
pattern?

The objective of this work was to apply the RF 
algorithm to the modelling of the aboveground carbon 
(AGC) stock of a tropical forest by testing three 
feature selection procedures – recursive removal and 
the uniobjective and multiobjective genetic algorithms 
(GAs).

Materials and Methods

The study area is the Rio Grande watershed (86,110 
km²), in the state of Minas Gerais, Brazil (Figure 1). 
This region has a highly varied ecological habitats, 
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Figure 1. Rio Grande watershed, Minas Gerais state, Brazil. Description: A, altitude (SRTM – Shuttle Radar Topography 
Mission); B, biomes; C, monthly maximum temperature; D, monthly minimum temperature; E, precipitation in the wettest 
month; F, precipitation in the driest month (WorldClim version 1.4); G, location of inventoried fragments. August 18, 2022.
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with a transition between Cerrado and Atlantic Forest 
biomes (Figure 1 B). Within the area, we highlight the 
existence of three types of vegetation: a rain forest 
(dense forest, with closed and continuous canopy, 
where the vegetation is highly influenced by high 
humidity and altitude); ii) a semideciduous forest 
(forest formation where part of the plants loses their 
foliage during the dry season, and where there is an 
understory formed by shrubs due to the existence of 
openings in the canopy; and an evergreen dry forest, 
locally known as “cerradão” (a forest formation with 
low density of individuals).

The forest inventory was performed by the cluster 
sampling methodology in the period 2014–2015. 
Rectangular clusters had three subplots with 250 m² 
(10 x 25 m). The arrangement was spatially distributed 
into systematic transects, 100 m apart, where the 
fragments had a minimum area to hold 10 conglomerates 
(30 subplots), totalizing 28 native vegetation 
fragments and 1,007 sampled subplots (Figure  1 G). 
We measured the diameter at breast height (DBH≥5 
cm) and the height of all individuals in the subplots. 
Total height (H) was obtained by direct measurements 
using a telescopic ruler. The AGC quantification was 
based on the destructive sampling of 232 trees that 
were felled and their wood (trunk and branches at 
minimum 3 cm diameter) dimensions were measured 
using Huber method, to obtain the wood total volume 
(Scolforo & Thiersch, 2004). Discs of about 5 cm 
were removed in some relative heights from trunk and 
branches (> 3 cm) to determine the basic wood density 
(for dry mass conversion from volume) in laboratory. 
The crown compartment (leaves and branches with 
diameter less than 3 cm) had their fresh matter mass 
quantified still in the field, and their biomass was 
obtained by removing the moisture content (in the 
laboratory). Carbon content (percentage) of wood 
and crown compartments was obtained through the 
total organic carbon (TOC) analyzer Vario TOC cube 
(Elementar Analysensysteme GmbH, Langenselbold, 
Hesse, Germany).

Based on the wood carbon values (kg) plus crown 
compartments (total above ground carbon stock), we 
adjusted a multiple linear model showed below to 
estimate the AGC stock of individual trees (kg), using 
the forest inventory information (DBH and H). The 
adjusted coefficient of determination (R²adjus%) and 
the residual standard error (Syx%) were respectively 

96.2% and 52.5%. The tree AGC values were summed 
within each plot and normalized by the plot area in 
hectares (0.025 ha) (Mg ha-1).

Ln C Ln DBH Ln H i( ) ( ) ( )� � � � � �� � � �0 1 2

in which: Ln is the natural logarithm; C is the 
aboveground carbon stock (kg); β0, β1, and β2 are 
parameters; DBH is the diameter at breast height (cm); 
H is the total height (m); and εi is the error.

We investigated a wide range of variable types 
(climatic, topographic, geographic, spectral, and 
edaphic) for the AGC modelling, which constituted 
114 environmental predictive variables (Figure 2). We 
downloaded 19 climatic variables from the WorldClim 
version 1.4 (Hijmans et  al., 2005) with about 1 km² 
spatial resolution. This climatic dataset is widely 
applied in vegetation studies and have proven its 
validity in the determination of aboveground biomass 
(AGB) and AGC estimations (Silveira et  al., 2019; 
Maia et  al., 2020). We obtained 17 terrain variables 
from the digital elevation model (DEM) Shuttle Radar 
Topography Mission – SRTM (resampled to 100 m 
of spatial resolution), using the software SAGA GIS 
(Conrad et  al., 2015). This software executes several 
algorithms in the DEM, producing different terrain 
variables, such as slopes, curvature, shading, place 
proximity to water channels, accumulation zones etc. 
Despite the application examples, the use of terrain 
variables for the modelling of AGC are rare in Brazil, 
and few studies indicate reliable contributions of these 
variables to the aboveground biomass/carbon modelling 
in tropical forests (Salinas-Melgoza et al., 2018; Silveira 
et al., 2019).

Spectral data were obtained from the Landsat 8 
OLI satellite (30 m resolution) and MODIS (with a 
variable resolution between 250 and 1,000 m), in the 
same time interval of the forest inventory (2015). 
Seven vegetation indices were computed from the 
Landsat images: normalized difference vegetation 
index (NDVI); normalized difference moisture index 
(NDMI); enhanced vegetation index (EVI); soil-
adjusted vegetation index (SAVI); modified soil-
adjusted vegetation index (mSAVI; normalized burn 
ratio (NBR); and normalized burn ratio 2 (NBR2). 
Spectral indices have been used to estimate the AGB 
or AGC since two decades ago; however, there was no 
consensus for the best index applied to all vegetation 
types, once indices vary in their relationships with 
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biomass. Although vegetation indices – such as NDVI, 
EVI, SAVI, and mSAVI – have been proposed in 
previous studies to estimate biomass, some researchers 
on tropical forests found that spectral indices, 
including the near-infrared (NIR) wavelength, showed 
weaker relationships with biomass than those spectral 
indices including shortwave infrared (SWIR) (Lu 
et al., 2016; Silveira et al., 2019). NBR and NBR2 tend 
to incorporate the near-infrared (NIR) and shortwave 
infrared (SWIR) wavelengths because they often 
have strong relationships with observed AGB values 
(Nguyen et al., 2020).

For each vegetation index, the following textures 
measures were calculated: variance (var); homogeneity 
(homog); contrast (contrast); dissimilarity (dissim); 
entropy (entrop); second moment (secmom); and 
correlation (correl). For these calculations, a window 
(61 rows by 61 columns, 3721 pixels) was used by 
the grey level co-occurrence matrix methodology 
(Hamunyela et al., 2016). Textural measures have been 
used to produce new variables from multispectral data, 
enabling a reduction of impacts of data saturation in 
Landsat imagery on AGB estimation accuracy (Lu 
et al., 2016). Texture measures were applied to examine 
the relationships between biomass and textural images 
for secondary forest and mature forest in the state 
of Rondônia, Brazil (Lu & Bastistella, 2005). These 
authors found that spectral responses play roles that 
are more important for biomass modelling than the 
textural measures, when the forest stand structure is 
relatively simple; however, textural images are more 
important than spectral responses for complex forest 
stand structures.

The MODIS sensor derived other 12 variables 
for the year 2015: Earth’s surface temperature 
(emis32, lstd, lstn), photosynthetic activity (fpar, lai), 
evapotranspiration (et, le, pet, ple), primary productivity 
(gpp, psnnet), and percentage of vegetation cover 
(treecover). The information provided by MODIS are 
highly valuable for forest management, such as forest 
biomass (Durante et  al., 2019; Ploton et  al., 2020). 
Although the spatial resolution of MODIS is coarse to 
the level of size plots, the integration of multiscale data 
from medium spatial resolution datasets, such as those 
from Landsat and radar, and coarse spatial resolution 
datasets, such as those from MODIS, are the direction 
for global/regional biomass estimation (Lu et al., 2016; 
Durante et al., 2019).

Soil physicochemical characteristics (organic 
matter content, pH, aluminum, clay, and the sum of 
bases) were determined at the first horizon soil depths 
(0-10 cm), at the midpoint of each subplot. Silicon 
dioxide (SiO2) and total iron (Fe) were obtained from 
the portable X-ray fluorescence spectrometer (pXRF - 
Bruker model S1 Titan LE) (Silva et al., 2021). These 
data were interpolated with 100 m spatial resolution.

The AGC values were superimposed with 
environmental variables by using a standard grid size 
of 100 x 100 m to solve the scaling problem (Figure 2). 
Within each grid, the average values of carbon and 
environmental variables were extracted. Grids (671) 
were divided into two sets for assessing the random 
forest performance. The training set was used to adjust 
the models (70%) and the validation set for the analyses 
of the predictive ability of models (30%).

The RF algorithm was selected for the modelling 
of the AGC due to the following main characteristics: 
simple parameterization, robustness, and accuracy. 
The critical step in the production of accurate 
estimates is to identify an ideal subset of variables that 
reliably explains the pattern of the response variable. 
Variable selection has become essential to improve the 
modelling tasks, mainly when it is applied to high-
dimensional data. This step allows of the removal of 
variables with low predictive power or autocorrelated 
variables. We tested three strategies to select a more 
efficient subset of variables and increase the predictive 
performance of the RF on carbon stock modelling, as 
follows: recursive removal of variables (RFrr); genetic 
algorithm with uniobjective function (GA-RFuni), 
and genetic algorithm with multiobjective function 
(GA-RFmulti). We also evaluated the model with the 
random forest algorithm with all variables to compare 
the results (RFall).

The first strategy uses the recursive removal of 
variables (RFrr) according to their ranking importance, 
in which the variable elimination is executed until the 
stop criteria (lowest mean square error) is attained. The 
iteration is associated with a single variable removal, 
and the remaining dataset starts a new algorithm cycle. 
The recursive feature elimination reduces potentially a 
very large number of variables to a more manageable 
subset. The initial parameter tests of RF algorithm 
suggested ntree = 1000 units and mtry = 10.67. The 
ntree is a parameter that defines the number of trees or 
algorithm divisions (a larger number of trees produces 
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more stable models, but requires more memory and a 
longer run time), and mtry is a parameter that defines 
the number of variables randomly sampled for splitting 
at each tree node (the default is the square root of the 
number of predictor variables).

The other two strategies of feature selection are 
hybrid methods. These methods consist of the GA 

managing the variable selection inserted within random 
forest. The procedure involved the dimensioning of 
the individuals in a defined length vector (114 genes). 
In this vector, each position represented a variable 
in the data set. AGC was the only fixed variable in 
this vector. Regarding the independent variables, a 
binary nature was assumed to activate (1) or not (0) 

Figure 2. Flowchart of the procedures for data set arrangements and feature selection methods for AGC (aboveground 
carbon) modelling. RFall, random forest with all variables; RFrr, random forest with recursive removal feature selection; 
GA-RFuni, random forest with uniobjective genetic algorithm; AG-RFmulti, random forest with multiobjective genetic 
algorithm.
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a determined variable inserted in the RF model. We 
used the fitness function to drive the search procedure 
and evaluated the effect of variable subset on the RF 
model accuracy. We tested two approaches of fitness 
functions in the GA-RF which differed by their goals. 
The first one is a uniobjective function (GA-RFuni) 
that sought the minimization of the out-of-bag (OOB) 
error. The other one is a multiobjective function 
(GA-RFmulti), by adding a second component 
responsible for minimizing the selected predictor 
variables. The OOB error is a method to measure the 
prediction error, in methodologies utilizing bootstrap 
aggregation, and the mean prediction error on each 
training sample is calculated only with the trees 
that did not make up the bootstrap sample (Mascaro 
et  al., 2014). Besides, the normalized values of the 
multiobjective function were calculated for the equal 
weight of each characteristic. The denominator 
values are 1060 (maximum utopic OOB error) and 
114 (total number of predictor variables), as follows:

Fitness
error OOB n

� �
( )

.
�

1060 144

As the tested algorithms are stochastic techniques, 
each processing run time always results in new values. 
We run 50 times to achieve a consistent outcome due 
to the local optimal response problem (limitation of 
the algorithm’s solution search space). To assess the 
performance of the methods, we used the following 
metrics: mean error (ME); root mean square error 
(RMSE); root mean square percentage error (RMSE%); 
residual plot analysis; and processing run time. The 
entire experiment was processed on a computer with 
an Intel Core i3-2100 processor at 3.10 MHz and 8 Gb 
of RAM. The RandomForest package (Liaw & Wiener, 
2002) of R software was applied for the RF algorithm 
analysis. We coded the GA-RF algorithm in the same 
computational framework.

Results and Discussion

There was a clear pattern for which spectral 
variables (Landsat vegetation indices, its texture 
measures, and the MODIS products) are most useful 
for predicting AGC (Figure 3), specially, treecover and 
NDMI make up the most important predictors. Texture 
measures (homogeneity and correlation) of NBR, 
NBR2, and NDVI also showed a relevant influence on 

carbon stock. Treecover depicts a quantitative measure 
of woody cover and describes it as a percentage of 
ground cover. This variable plays an essential role in 
the present study, as it helps with distinguishing the 
vegetation types in an area, ranging from dense forests 
(Atlantic Forest) to fields with sparse trees (Cerrado), 
which causes a great variation in the carbon values. 
The importance values obtained by vegetation indices, 
such as NDMI, NBR, and NBR2, point to the relevance 
of using longer wavelengths (near infrared-shortwave 
infrared) in the AGC modelling, as suggested by some 
authors (Lu & Batistella, 2005; Campbell et al., 2021). 
Texture measures also showed be able to model AGC, 
featuring tree canopy cover and vegetation structure, 
surpassing the spectral data saturation as highlighted 
in other studies (Lu & Batistella, 2005; Lu et al., 2016).

Among the terrain variables, the direct insolation 
(direct_ins) and the vertical distance (vert_dist) 
stood out among the others (Figure 3). Isothermality 
(BIO3) and maximum temperature of the warmest 
month (BIO5) showed the highest-importance values 
among the climatic variables, and the sum of bases 
(SB), among the edaphic variables (Figure 3). Tropical 
forest C dynamics are tightly coupled with energy and 
water exchange between the biosphere and atmosphere 
(Wang et al., 2021). The vertical distance to a channel 
network base level is related with water availability, 
which drives strong differences in the biomass in 
deciduous upland and the semi-deciduous forests 
(Salinas-Melgoza et al., 2018). Earlier studies suggested 
that the tropical forest productivity could be limited 
more by solar radiation than by temperature and water 
(Seddon et al., 2016; Wang et al., 2021). Recent work 
suggests that temperature is also important in wet 
forests that operate close to a temperature optimum for 
their productivity (Huang et al., 2019).

The importance values (Increase MSE%) of variables 
were fewer than 8%, which shows a low explanatory 
power of the predictive variables (Figure  3). Local 
and regional scale studies that used similar variables 
obtained values of Increase MSE% above 20% and 
30% (Silveira et al., 2019; Campbell et al., 2021). This 
fact can be attributed to the vegetation heterogeneity 
in the study area, and to the weak resolution of the 
predictive variables in relation to the subplot size (10 x 
25 m) disturbing to directly link plot forest measures 
to satellite data due to coarser spatial resolution and 
positional uncertainty (Ploton et  al., 2020). Even in 
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Figure 3. Variable importance ranking for the mean of Increase MSE (%) (mean square error), considering: A, RFall 
(random forest with all variables) with only 30 most important variables; B, variables selected by RFrr (random forest 
with recursive removal feature selection); C, GA-RFuni (random forest with uniobjective genetic algorithm); and D, GA-
RFmulti (random forest with genetic algorithm multiobjective). Climatic variables: BIO03, isothermality; BIO05, maximum 
temperature of the warmest month; BIO07, annual temperature range; BIO08, mean temperature of the wettest quarter; 
BIO11, mean temperature of the coldest quarter. Terrain variables: direct_ins, direct insolation; dif_insol, diffuse insolation; 
cn_base_le, channel network base level; conv_index, convergence index; slope_perc, slope (%); valley_dep, valley depth; 
vert_dist, vertical distance. MODIS products: le, latent heat flux; et, global evapotranspiration; pet, potential  global 
evapotranspiration; ple, potential latent heat flux; fpar, fraction of photosynthetically active radiation; lstd, land surface 
temperature day. Edaphic variables: sb, sum of bases; sio2, silicon dioxide. Vegetation indexes: EVI, enhanced vegetation 
index; NDVI, normalized difference vegetation index; NDMI, normalized difference moisture index; NBR, normalized 
burn ratio; NBR2, normalized burn ratio 2; SAVI, soil-adjusted vegetation index; MSAVI, modified soil-adjusted vegetation 
index. Geographic variables: X, latitude; Y, longitude. Texture measures: _corre, correlation; dissi, dissimilarity; var, 
variance; secm, second moment; _homog; homogeneity; _entrop, entropy; _contra, contrast.

A B C D

Spectral variables

Terrain variables

Edaphic variables

Climatic variables

Geographic variables

r
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the case of strong environmental contrasts monitored 
at fine scale, the environmental effects explain only a 
small fraction of variations in the AGB, and interact 
largely with the structural effects (Guitet et al., 2015; 
Silveira et al., 2019).

Regarding the modelling strategies based on different 
feature selections, the procedures did not show significant 
accuracy differences. However, it is noteworthy 
that they produced differences for selected variable 
quantities and variable subsets. Our best selection 
strategy (GA-RFmulti), with fewer variables and better 
accuracy, selected an optimized subset containing 
treecover, NDMI, NBR2_corre, and le. The treecover 
is the representation of the earth’s surface vegetation 
cover, and le (latent heat flux) corresponds to the lost of 
water vapor  from the Earth’s surface to the atmosphere, 
which is called evapotranspiration. Even though these 
products are empirically related to forest AGC, they 
have not been applied to the estimation of remote-
sense-based biomass. The NDMI detects the leaf water 
content and it is calculated by the ratio between NIR 
and SWIR1. The texture variable (nbr2_corre) reflects 
the correlation between vegetation water sensitivity, 
calculated by the ratio between SWIR1 and SWIR2, 
and the neighbor’s pixels. These results highlight the 
significance of the SWIR and NIR wavelengths (which 
are less sensitive to atmospheric effects) for the AGC 
modelling  and agree with the results of other studies 
(Silveira et al., 2019; Nguyen et al., 2020; Taddese et al., 
2020). These selected variables confirm the relation 
between water availability and different AGC levels in 
the vegetation. As to the number of selected variables, 
the optimized subset of each tested feature selection 

resulted in 8 (RFrr), 35 (GA-RFuni), and 4 variables 
(GA-RFmulti) (Figure 3).

The strategies using GA were highly affected 
according to the enabled fitness function (uni/multi). 
The multiobjective function had 88.58% and 96.5% 
fewer variables than the uniobjective and RFall, 
respectively (Table  1). All selected variables in GA-
RFmulti belonged to the spectral class (Figure 3 D). 
Furthermore, it is pertinent to highlight that the GA-
RFuni strategy defined a set of 35 predictor variables, 
out of which 57% (20 variables) were spectral –, 
and some of them showed low values of IncMSE%. 
By selecting more variables, the GA-RFuni strategy 
allowed of the inclusion of predictors with IncMSE% 
(percentage increase in the mean square error) less 
than 4%, which means a low-explanatory power.

Overall, the prediction errors (RMSE%) had slight 
differences facing all tested strategies and datasets 
(Table  1). These variations were inferior to 1.4% 
(training) and 2.22% (validation). The validation of 
outcomes was satisfactory, with narrow differences 
for accuracy metrics in relation to training. The 
training phase adjusted the models efficiently, as 
their application to the validation set showed their 
generalization capacity for an independent base. This 
fact proved the applicability of the strategies. The 
comparison of the metrics ME, RMSE, and RMSE 
(%) showed a ranking based on accuracy decreasing 
for RFrr, GA-RFmulti, GA-RFuni, and RFall, in the 
training dataset, and a similar pattern in the validation 
dataset changed only RFrr and GA-RFmulti positions. 
Furthermore, it is worth noting that the residual plots 
showed a similar behavior for all strategies (Figure 4). 

Table 1. Assessment metrics for training and validation data sets of the tested strategies (RFall, RFrr, GA-RFuni and GA-
RFmulti) for the modelling of AGC stock.

Set Strategy Mean error RMSE RMSE (%) Time(1) (s) N

Training

RFall -1.68 17.56 36.89 16.82 114
RFrr -1.26 16.89 35.49 204.41 8

GA-RFuni -1.33 17.03 35.79 1.656.00 35
GA-RFmulti -0.88 16.92 35.56 331.20 4

Validation 

Rfall -2.18 18.81 39.22 - 114
RFrr -1.61 18.11 37.74 - 8

GA-RFuni -1.61 18.34 38.24 - 35
GA-RFmulti -0.66 17.75 37.00 - 4

(1)Mean of the time-consuming (s) computation. RMSE, root mean square error; RMSE (%), root mean square percentage error; N, number of selected 
variables; RFall, random forest with all variables; RFrr, random forest with recursive removal feature selection; GA-RFuni, random forest with 
uniobjective genetic algorithm; AG-RFmulti, random forest with multiobjective genetic algorithm.
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Model predictions showed a fairly linear relationship 
with the observed AGC, although the model tended to 
overestimate low AGC values and to underestimate 
high AGC values (Figure  4 A), which is a common 
bias pattern of the RF algorithm (Ploton et al., 2020).

Unfortunately, forest biomass/carbon estimates 
are associated with various errors and uncertainties 
(Guitet et  al., 2015). Many studies have suggested 
that the relative errors (RMSE%) of the estimates 
can vary from 5% to 30%, depending on the forest 
ecosystems, topographic characteristics, remotely 
sensed data and their spatial resolutions, methods used 
etc. (Lu et al., 2016). An approach based on structural 
analysis of mixed pixels and the random forest model 
was proposed by Wang & Jiao (2020), in order to 
increase the accuracy of AGB estimated from coarse 
resolution data in broadleaf forest, mixed forest, and 
some coniferous forests. The results showed that the 
accuracy of AGB estimated from MODIS data was 
increased using this method, and RMSE decreased 
from 51.6 Mg ha-1 to 26.8 Mg ha-1. Ploton et al. (2020) 
built an RF model to predict AGB from a combination 
of 9 MODIS products and 27 environmental variables 
in a tropical forest; their evaluation led to an estimated 
R2 of 0.53 and RMSE of 56.5 Mg ha-1. In the present 
study, the smallest error reached in validation was 
attained by the methodology GA-RFmulti (RMSE 
17.75 Mg ha-1). Our study area showed 47.59 Mg ha-1 

average AGC stock, 25.05 Mg ha-1 standard deviation, 
and minimum and maximum values of 7.73 and 214.96 
Mg ha-1, respectively (Table 2). These results denote a 
high heterogeneity of AGC stock, which contributes 
to modelling uncertainties. The improvement of these 
estimates in extensive and heterogeneous landscapes 
requires a better understanding of the environmental 
system and its spatial variation (Guitet et al., 2015).

Even with all sampling and methodological efforts, 
the accuracy of the models did not reach the desired 
standard. This situation can be explained and even 
circumvented by taking some factors into account. The 
first one is the scale factor, in which variables with 
coarse resolution are linked to small plots areas. In the 
present study, AGC values obtained in 10 x 25 m plots 
were represented by variables with spatial resolution 
from 100 m to 1 km. The result is inaccurate because 
of the scaling effect, caused by nonlinearity in data 
representation, and because of the existence of mixed 
pixels containing different forest types and land uses 
(Ploton et  al., 2020). An alternative to minimize the 
problem with scale is the use of object-based modelling 
instead of using the pixel or grid methodology (Silveira 
et  al., 2019). Another point is that remotely sensed 
signals correlated to forest aboveground biomass– 
such as vegetation indices or surface reflectance in a 
particular wavelength – saturate when biomass reaches 
a threshold of 100–200 Mg ha-1 (Lu et al., 2016). Most 
recent efforts for the mapping forest aboveground 
biomass engage with remotely sensed data from 
multiple sensors, such as Lidar and SAR (Synthetic 
Aperture Radar) to get around this problem.

We suggest a similar performance for RFrr and GA-
RFmulti (Table 1, Figure 4). These strategies with the 
smallest number of predictor variables obtained the 
best results concerning the accuracy of the models, 
confirming that it is better to use an optimal subset, 
rather than using all available variables. Feature 
selection is a complex task; therefore, the GA demands 
high time-consuming and computational efforts to 
search for the best variable subset. The processing 
time ranged between 98.45 (uniobjective function) 
and 19.69 more times  than RFall (multiobjective 
function). This latter was similar to the RFrr (12.15 
times of RFall).

Table 2. Descriptive statistics obtained for AGC stock from field inventory (real values), and the best predictive strategy – 
GA-RFmulti – random forest with multiobjective genetic algorithm – (predicted values), according to training and validation 
datasets.

Descriptive  
statistic

Training dataset – AGC stock (Mg ha-1) Validation dataset – AGC stock (Mg ha-1) 
Real (forest inventory) Predicted (GA-RFmulti) Real (forest inventory) Predicted (GA-RFmulti)

Mean 47.59 48.47 46.69 48.58
Standard deviation 25.05 12.65 23.93 12.58
Maximum 214.96 120.99 178.71 98.12
Minimum 7.73 23.16 3.84 19.96
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The RF algorithm efficiently performs information 
extraction even with a large data set. Our RF findings 
corroborate those by Speiser et  al. (2019) suggesting 
the ability to handle datasets with a huge number of 
predictor variables. According to Rodriguez-Galiano 
et al. (2018), a large dataset with irrelevant features may 
affect the algorithm performance. It increases the model 
complexity and turns the replication impracticable in 
other areas. Identifying the optimum set of variables 
is also essential to tackle the variable redundancy 
problem (Speiser et  al., 2019). A lower number of 
variables benefits the model application, optimizing the 
computational performance and processing time over 
large areas. Following the example of our study, we 
manipulated our dataset containing 114 variables from 
the Rio Grande watershed, which constituted a raster 
file with 160.2 GB size. Conversely, if we predict the 
AGC using the GA-RFmulti (4 variables), this file size 
will have only 5.5 GB or 3.43% of the total computational 
memory. In this context, the methodological efforts 
to reduce the dataset size are very important, mainly 
for mapping purposes in large areas. Nevertheless, 
the RFrr method has a questionable performance 

in extra-large databases. This fact is attributed to 
the application of unidirectional rules to remove 
undesired variables based on the increasing order of 
their importance values. This approach may result in a 
weak procedure, since the constraint order may affect 
or make impossible a positive combinatory behave of a 
variable set. It can lead RF to a greater probability of 
running with the same variables that are often highly 
correlated. Conversely, the GA-RF multiobjective 
function acted robustly, just focusing not only on the 
minimum error. The combination of two components 
(number of variable/error) guides for a better algorithm 
application. Kumar & Sahoo (2017) also applied the 
same meta-heuristic reducing 50% of the number of 
variables. Tavasoli & Arefi (2021) used Sentinel-2 
optical data and GA-RF to estimate AGC stock. They 
reported GA-RF benefits, such as fast achievement 
of high accuracy and great capacity to reduce the 
number of predictors, improving the performance of 
the RF model. Therefore, our study encourages the 
application of the GA-RF multiobjective function, due 
to its valuable outcomes. The state of knowledge on the 
modelling of forest attributes has been changing due 

Figure 4. Residual plots of aboveground carbon stock (AGC, Mg ha-1) for random forest strategies and datasets: A, RFall 
(random forest with all variables); B, RFrr (random forest with recursive removal feature selection); C, GA-RFuni (random 
forest with uniobjective genetic algorithm); and D, GA-RFmulti (random forest with multiobjective genetic algorithm).
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to computational advances. The interest in results has 
moved from the consideration of statistical assessments 
only to the aggregation of more interpretative and robust 
meanings given to feature selection. Future studies 
combining big data with competing machine-learning 
models could broaden the insights of the present study. 
This approach may help to feed the systems of national 
forest service, as its findings would act decisively for 
forest management and planning.

Conclusions

1. Feature selection strategies assist in obtaining 
a better random forest (RF) performance, by 
improving the accuracy and reducing the volume 
of the data; although the recursive removal (RFrr) 
and multiobjective genetic algorithm (GA-RFmulti) 
showed a similar performance as feature selection 
strategies, the latter presents the smallest subset of 
variables, with the highest accuracy. 

2. The best feature selection strategy– the random 
forest together with the multiobjective genetic algorithm 
– reaches the minor root-square error with only four 
spectral variables (the normalized difference moisture 
index, normalized burn ratio 2 – correlation texture, 
treecover, and latent heat flux), which represents a 
reduction of 96.5% in the size of the database.

3. Near infrared and short wavelengths are 
important for remote-sense-based aboveground 
carbon estimation; the vegetation indices derived these 
wavelength bands, since the normalized difference 
moisture index and normalized burn ratio prove their 
relevance in this task, even as its texture measures; 
the MODIS products, such as percent treecover and 
latent heat flux show a significant relationship with the 
aboveground carbon stock.
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