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Abstract – The objective of this work was to evaluate multivariate calibration models to predict total lipids, 
crude protein, and moisture content in grinded soybean grains using near-infrared spectroscopy and partial 
least squares (PLS). Three hundred samples of grinded soybean, evaluated in duplicate, were used for reference 
and spectral measurements. The PLS models for total lipids, crude protein, and moisture were validated by 
figures of merit for accuracy and precision, respectively, of 0.75 and 0.67 for total lipids, 0.51 and 0.46 for 
crude protein, and 0.97 and 0.99 for moisture. The PLS models developed for total lipids, crude protein, and 
moisture can be used as an alternative methodology for the determination of physicochemical parameters, 
and, therefore, they can be applied in quality control in soybean processing industries.

Index terms: Glycine max, chemometric methods, crude protein, multivariate calibration, partial least squares, 
total lipids.

Avaliação rápida não invasiva de parâmetros de qualidade em soja triturada 
 com uso de espectroscopia de infravermelho próximo

Resumo – O objetivo deste trabalho foi avaliar modelos de calibração multivariada para previsão de teores 
de lipídios totais, proteína bruta e umidade em grãos de soja triturados, com uso da espectroscopia de 
infravermelho próximo e do método de mínimos quadrados parciais (PLS). Foram utilizadas 300 amostras 
de grãos de soja trituradas, avaliadas em duplicata, quanto a medidas de referência e espectrais. Os modelos 
PLS para lipídios totais, proteína bruta e umidade foram validados por meio das figuras de mérito para 
exatidão e precisão, respectivamente, de 0,75 e 0,67 para lipídios totais, 0,51 e 0,46 para proteína bruta, e 0,97 
e 0,99 para umidade. Os modelos PLS desenvolvidos para lipídios totais, proteína bruta e umidade podem 
ser utilizados como metodologia alternativa para determinação de parâmetros físico-químicos e, portanto, 
podem ser aplicados no controle de qualidade em indústrias processadoras de soja.

Termos para indexação: Glycine max, métodos quimiométricos, proteína bruta, calibração multivariada, 
mínimos quadrados parciais, lipídios totais.

Introduction

Soybean [Glycine max (L.) Merrill] plays an 
important role in the Brazilian and worldwide markets 
(Cavalcante et al., 2011) due to its versatility as human 
and animal food, as well as to its economic value 
(Hirakuri & Lazzarotto, 2014).

Considering Brazil is among the largest soybean 
producers in the world, this legume is an important 
Brazilian commodity, responsible for more than 
56% of the cultivated area. For the 2016/2017 crop, 
a record production of 107.6 million tons of soybean 
is estimated. The total domestic consumption should 

reach 47.7 million tons, and approximately 59.9 million 
tons should be exported; also, China is one of the main 
importers of Brazilian soybean (Acompanhamento…, 
2017).

Soybean dominates vegetable protein and edible 
oil’s production in world market. Besides, soybean oil 
emerges as a byproduct of soybean bran processing 
and has become one of the world leaders in oil trade 
(Maciel et al., 2016). Therefore, the grain quality is an 
important parameter not only for producers but also 
for industry, and in many countries soybean price is 
determined by its physicochemical characteristics 
(Huang et al., 2008).
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In this way, the commercialization of soybean 
derivatives demands strict control of grains and 
marketing standards. Nonetheless, traditional 
analytical procedures used in quality control are time 
consuming, expensive, destructive to the samples and 
generate chemical residues. Thus, the development 
of methodologies that improve the analytical aspects, 
as the speed of responses and non-destructivity, are 
required (Ma et al., 2017).

In search of fast routine methods for quantification of 
various products in food samples, optical methods have 
been increasingly used. Among them, spectroscopy 
in near-infrared region (NIR) can be highlighted by 
its low operational cost, non-destructivity and non-
invasive character, besides the fact that it does not 
generate residues (Pasquini, 2003; Bevilacqua et  al., 
2013).

There are reports of studies for direct measurements 
of protein, carbohydrate, lipids, moisture (Guo & 
Baianu, 2011), dry weight and starch (Huang et  al., 
2008) of various grains through near-infrared 
spectroscopy. Montes et al. (2006) measured the dry 
matter content in corn with near-infrared spectroscopy 
coupled directly to the harvesting machine. Long et al. 
(2008) reported an approach to inspect wheat grain 
protein online with the use of NIR analysis. Heman 
& Hsieh (2016) measured the moisture content of 
bark rice by visible and near-infrared spectroscopy. 
Ferreira et al. (2014) investigated the soybean proximal 
composition by NIR associated with multivariate 
calibration methods. These examples reinforce the use 
of near-infrared as an analytical technique increasingly 
known in food industry (Porep et al., 2015). However, 
such studies were not validated, which compromises 
the functionality of the studies cited above.

Infrared spectroscopy associated with chemometric 
methods can be indicated as a fast and reliable method 
to be used in food quality control (Restaino et  al., 
2011; Ma et al., 2017). This strategy has been applied 
to a wide variety of studies involving grain analysis, 
mainly in agricultural sector, due to the relative ease 
of implementation of this low cost technology in an 
industrial environment, quality control laboratories or 
to the inline production (Haughey et al., 2013).

The objective of this work was to evaluate 
multivariate calibration models to predict total lipids, 
crude protein, and moisture content in grinded soybean 

grains using near-infrared spectroscopy and partial 
least squares (PLS).

Materials and Methods

The work was developed at the laboratory of food 
analysis of the Universidade Tecnológica Federal do 
Paraná, and at the physical-chemical laboratory of 
quality control of Coamo Agroindustrial Cooperativa, 
both in the state of Paraná, Brazil. Soybean samples 
were provided by Coamo, totaling 300 samples from 
several different municipalities distributed in the 
northwestern region of Paraná, which were evaluated 
in duplicate.

For the analyses, 250 g of sample were dried in a 
forced air circulation oven at 130°C during 1 hour 
and then taken to the desiccator, remaining there for 
about 12 hours (AOCS, 2009). Then the dried samples 
were ground in a MA-090CFT rotor mill (Marconi 
Equipamentos para Laboratórios, Piracicaba, SP, 
Brazil), with 0.85 mesh. A portion of the ground 
soybean samples was exposed to analysis by NIR and 
other portion was set to be analyzed regarding its total 
lipid, crude protein and moisture content by methods 
recommended by the American Oil Chemists’ Society 
(AOCS, 2009), in the soybean processing industry 
itself, for further production of oil and bran.

Spectra were measured from previously ground 
soybean samples with the MicroNIR 1,700 near-
infrared ultracompact equipment (Viavi Solutions 
Inc., Milpitas, CA, USA) at room temperature using 
diffusion reference, being each sample evaluated in 
duplicate. This equipment offers online scanning for 
the region from 910 to 1,676 nm, with a constant range 
of 6.2 nm. The blank measurement was completed 
using a Spectralon NIR (Labsphere, Inc. North Sutton, 
NH, USA) reflection pattern with a diffuse reflection 
coefficient of 99%, and dark calibration (non-
reflective) reference was taken with radiation source 
of the equipment switched off.

After the spectra acquisition, the partial least 
squares (PLS) were used (Wold, 1973, 1980; Geladi & 
Kowalski, 1986; Wold et al., 2001) through the software 
Matlab R2013a with the PLS-Toolbox 7.8 package 
(Eigenvector Research Incorporated, Manson, WA, 
USA), provided by Embrapa Solos, headquartered in 
the municipality of Rio de Janeiro, in the state of Rio 
de Janeiro, Brazil.
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For the models’ construction, two thirds of the 
samples were selected to the calibration set and one 
third for validation. Smoothing was done using the 
Savitzky-Golay algorithm (13 interval window, 1st 
degree polynomial and 1st derivative) (Savitsky & 
Golay, 1964). The models were built using cross-
validation (internal validation) through continuous 
blocks of 10 samples. In this kind of internal validation, 
10 samples are left out of the model construction 
process and then these samples are predicted by the 
constructed model. This process is repeated until all 
samples have been left out and predicted. The outliers 
were identified and removed when necessary by 
analyzing the plots of Qresidual versus leverage (Martens 
& Naes, 1992). All models were mean-centered using 
12 latent variables (VL), corresponding to more than 
98% of the data variance (spectral and reference 
concentrations). The number of VL was determined 
through the root mean square error of cross-validation 
(RMSECV) for the calibration samples, taking into 
account the percentage of variance explained in vector 
y.

The validation of the multivariate calibration models 
was performed through the following figures of 
merit: accuracy, linearity, fit, inverse of the analytical 
sensitivity, and detection and quantification limits (Villar 
et al., 2011; ASTM, 2012; Botelho et al., 2015; Westad & 
Marini, 2015). The residual prediction deviation (RPD) 
was evaluated according to Botelho et al. (2013), and the 
results are described in detail below.

Results and Discussion

The analysis of total lipids, crude protein, and 
moisture content has displayed a wide variation when 
they were evaluated by standard methods, as shown in 
Table 1. The total lipid content ranged from 16.04 to 
26.33%. The crude protein content varied from 33.09 to 
40.11%, while the percentage of moisture was between 
1.17 and 9.76%. According to Greggio & Bonini 
(2014), this variation can be considered acceptable 
since the composition is affected by the origin of the 
raw material, and factors such as climate, soil profile, 
water deficit, harvest, transport, and storage affect the 
chemical composition of the grain.

Other studies that analyzed soybean grain samples 
from the state of Paraná also found similar variations 
for the physical-chemical parameters analyzed in this 

study, where the total lipid content showed variations 
of 18.16-23.86%, crude protein varied from 32.91 to 
39.41%, and the moisture ranged from 6.70 to 8.50% 
(Ferreira et al., 2014; Gonçalves et al., 2014).

Spectra of the ground soybean samples are shown in 
Figure 1 (A). It was observed that the measured spectral 
region showed broad and intense vibration bands, 
usually related to the vibration of water molecules. 
Such vibrations lead to significant overlaps, most of 
them due to the absorption bands of proteins, making 
it difficult to assign specific bands to its constituents 
(Pasquini, 2003; Cen & He, 2007). However, through 
the application of derivatives, the more informative 
regions can be more evidenced, helping to interpret 
and correlate the vibrational bands, although the 
small variation of the evaluated contents between 
the samples can cause only slight alterations in the 
spectrum (Burns, 2007). Thus, Figure  1 (B) shows 
the first derivative of the spectra made by Savitzky-
Golay algorithm. It was observed that the regions 
between 980–1,020; 1,210–1,220; and 1,400 nm appear 
prominent. These regions brings information regarding 
primary and secondary overtones of O-H and N-H 
vibrations, primary overtones of C-H combination 
bands, secondary and tertiary C-H overtones, C-H 
from aromatic compounds, and N-H stretch vibrations. 
In addition, this region is strongly affected by particle 
size variations (Westad et al., 2008).

The models’ performance was verified by the 
analysis of the figures of merit, calculated for each 

Table 1. Figures of merit obtained to the PLS model for the 
physical-chemical parameters of ground soybean (Glycine 
max).

Figures of merit(1) Total lipids 
(%)

Crude 
protein (%)

Moisture 
(%)

RMSEC 0.7504 0.5135 0.9715
RMSEP 0.6747 0.4552 0.9914
Rcal 0.8811 0.8879 0.8721
R2

cal 0.7763 0.7884 0.7606
RPDcal 1.6906 2.0377 1.8851
Sensitivity 9.468×10-5 1.614×10-4 6.747×10-5

Analytical sensitivity 5.3872 9.6200 3.5593
Inverse of analytical sensitivity 0.1856 0.1039 0.2810
Detection limit 0.6126 0.3430 0.9271
Quantification limit 1.8562 1.0395 2.8095

(1)RMSEC, root mean square error of calibration; RMSEP, root mean 
square error of prediction; Rcal, correlation coefficient to calibration; R2

cal, 
determination coefficient for calibration; and RPDcal, residual prediction 
deviation.
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model, as presented in Table 1. The fit was evaluated 
through the root mean square error of calibration 
(RMSEC) and prediction (RMSEP), which are 
considered indicators of accuracy. The RMSEC and 
RMSEP values are global parameters that incorporate 
both systematic and random errors from the reference 
method. The relationship between RMSEC and 
RMSEP should be as close as possible (to each other) 
to suggest that the values estimated by the multivariate 
models showed good agreement with the reference 
methods, indicating that the number of latent variables 
chosen was adequate for the model, allowing to check 
about model overfitting. In this study, for the total 
lipid content parameter, a RMSEC of 0.7504 and a 
RMSEP of 0.6747 were obtained, while for crude 
protein, the RMSEC and RMSEP were 0.5135 and 
0.4552, respectively. The moisture content showed 
values of 0.8715 for RMSEC and 0.9914 for RMSEP 
(Valderrama et  al., 2007). In the case of this study, 
since the relationship between RMSEC and RMSEP 
was always very close, it can be considered that all 
models obtained were satisfactory, which means that 
the appropriate number of VLs was used, allowing 
the construction of models with satisfactory accuracy 
without overfitting.

Another indicator of accuracy is the regression 
between reference values and the values estimated 
by the model, which is the model fit (correlation 
coefficient - R), which are displayed in Table 1. The 
correlation coefficient (Rcal) for total lipids, crude 
protein and moisture were 0.8811, 0.8787 and 0.8721, 
respectively. These results can be considered adequate 
since the reference methods showed a wide variation, 
and it is known that the correlation coefficient is 
directly related to the errors embedded in the reference 
methods. Therefore, if the standard method shows 
high levels of analytical errors, they will be present in 
the multivariate calibration models, directly affecting 
the correlation. The fit, that is, the correlation between 
the values found from the reference method and those 
predicted by the model are presented in Figure 2 for 
crude protein (A), for total lipid content (B), and for 
moisture (C).

The coefficients of determination for calibration 
were 0.7763 for total lipid content, 0.7884 for crude 
protein, and 0.7606 for moisture (Table 1). Although 
these appear to be low values, similar results have been 
previosly reported in the literature when the reference 
method is subject to high variations (Valderrama et al., 
2007; Ferreira et al., 2014). The values obtained in the 
present study are consistent with those found by Ferreira 

Figure 1. Near-infrared spectra obtained from ground soybean (Glycine max): A, raw spectra; and B, after first derivative.
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Linearity of the suggested models was evaluated 
by observing the distribution of the residues. For this 
parameter, it is considered that the data evaluated 
follow a linear model if the residuals have random 
dispersion. Thus, it can be stated that the PLS model 
was ideal for all evaluated cases, as can be observed 
in Figure 3 for crude protein (A), for total lipid content 
(B), and moisture (C).

The RPD value of the calibration model was 1.6906 
for total lipid content, 2.0377 for crude protein and 
1.8851 for moisture (Table 1). The predictive capacity 
of the models was considered satisfactory according 
to the literature since good predictive quality 
calibration models are those that have values for RPD 
above 2.4, and the ones classified as satisfactory are 
those with values between 2.4 and 1.5 (Botelho et al., 
2013).

Sensitivity is defined as the fraction of signal 
responsible for adding one unit of concentration to the 
property of interest. In this study, the models provided 
a value of 9.468x10-5 g per 100 g for total lipid content, 
1.614x10-4 g per 100 g for crude protein and 6.747x10‑5 
g per 100 g for moisture (Table  1). The analytical 
sensitivity was 5.3872, 9.6200, and 3.5593, for total 
lipid, protein and moisture content, respectively. This 
parameter shows the sensitivity of the method in terms 
of the unit of concentration that is used and is defined 
as the ratio between the sensitivity and the standard 
deviation of the reference signal (Valderrama et  al., 
2009). For this study, as the variation of the contents 
obtained by the reference method of each parameter 
was significantly high, it is considered that the results 
were satisfactory.

The inverse of the analytical sensitivity (analytical 
sensitivity-1) allows to establish the smallest 
concentration difference between samples, which 
can be distinguished by the method, considering 
the instrumental random error as the only source of 
errors. Thus, for the proposed models, it was possible 
to distinguish samples with a difference in content of 
0.1856 g per 100 g for total lipids, 0.1039 g per 100 g 
for crude protein and 0.2810 g per 100 g for moisture 
(Table 1).

The detection limit is the lowest concentration of 
the substance of interest that can be detected, but 
not necessarily quantified. Therefore, the minimum 
concentration that can be reliably detected by the 
model using infrared was 0.6126 g per 100 g for total 

Figure 2. Model fit for: A, crude protein; B, total lipid 
content; and C, moisture content.
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et al. (2014), who analyzed the centesimal composition 
of soybean in grain by near-infrared spectroscopy 
and obtained coefficients of determination of 0.72 for 
moisture, 0.88 for protein, and 0.67 for lipids. It should 
also be noted that in the study proposed by Ferreira 
et al. (2014) only 40 soybean samples were analyzed. 
Moreover, it was made in a research laboratory 
with all conditions (temperature, air moisture, etc.) 
under control, differing from an industry process in 
significant aspects. It also must be considered that in 
the case of Ferreira et al. (2014), the methodology was 
not validated.

http://dx.doi.org/10.1590/S0100-204X2018000100011


102 L.R. dos Santos et al.

Pesq. agropec. bras., Brasília, v.53, n.1, p.97-104, Jan. 2018
DOI: 10.1590/S0100-204X2018000100011

with the reference methods, since the models showed 
a satisfactory correlation, and produced errors of the 
same order of those provided by the reference methods.

Conclusions

1. In general, the models constructed from NIR 
spectroscopy of soybean (Glycine max) samples can 
be used to carry out non-invasive rapid evaluations of 
quality parameters in ground soybean.

2. The use of near-infrared spectroscopy can be 
applied in conjunction with the partial least squares 
methodology for the construction of mathematical 
models to predict quality parameters in ground 
soybean, being an alternative for the quality control of 
soybean grains in food industries.
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