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Abstract – The objective of this work was to evaluate the potential of several spectral indices, calculated using 
moderate resolution imaging spectroradiometer (Modis) images, in identifying drought events in sugarcane 
(Saccharum officinarum) crops. Images of Terra and Aqua satellites were used to calculate the spectral indices, 
using visible (red), near infrared, and shortwave infrared bands, and eight indices were selected: NDVI, EVI2, 
GVMI, NDI6, NDI7, NDWI, SRWI, and MSI. The indices were calculated using images between October 
and April of the crop years 2007/08, 2008/09, 2009/10, and 2013/14. These indices were then correlated with 
the standardized precipitation-evapotranspiration index (SPEI), calculated for 1, 3, and 6 months. Four of 
them had significant correlations with SPEI: GVMI, MSI, NDI7, and NDWI. Spectral indices from Modis 
sensor on board the Aqua satellite (MYD) were more suited for drought detection, and March provided the 
most relevant indices for that purpose. Drought indices calculated from Modis sensor data are effective for 
detecting sugarcane drought events, besides being able to indicate seasonal fluctuations. 

Index terms: Saccharum officinarum, drought stress, image processing, satellite imagery, SPEI, warning 
systems.

Identificação de eventos de seca em cana-de-açúcar com 
base em índices de seca derivados do sensor Modis 

Resumo – O objetivo deste trabalho foi avaliar o potencial de diversos índices, calculados com o uso de 
imagens do sensor Modis (“moderate resolution imaging spectroradiometer”), em identificar eventos de 
seca na cana-de-açúcar (Saccharum officinarum). As imagens dos satélites Terra e Aqua foram utilizadas 
para calcular os índices espectrais, com bandas na região do visível (vermelho), infravermelho próximo e 
infravermelho médio, e oito índices foram selecionados: NDVI, EVI2, GVMI, NDI6, NDI7, NDWI, SRWI e 
MSI. Os índices foram calculados com base em imagens de outubro a abril de quatro anos agrícolas: 2007/08, 
2008/09, 2009/10 e 2013/14. Esses índices foram correlacionados com o índice de seca meteorológica SPEI, 
calculado para 1, 3 e 6 meses. Quatro deles tiveram correlação significativa com o índice SPEI: GVMI, MSI, 
NDI7 e NDWI. Os índices espectrais derivados do sensor Modis a bordo do satélite Aqua (MYD) são mais 
adequados para o reconhecimento de eventos de seca, e março proporcionou os índices mais relevantes para 
esse propósito. Índices de seca calculados com base em dados Modis são efetivos em detectar eventos de seca 
em cana-de-açúcar, além de serem capazes de apontar flutuações sazonais. 

Termos de indexação: Saccharum officinarum, stress hídrico, processamento de imagens, imagem por 
satélite, SPEI, sistemas de alerta.

Introduction
Some types of extreme events are more prone to 

occur with increasing temperature, notably heat waves 
and heavy rainfall (Coumou & Rahmstorf, 2012). 
Drought is the most expensive natural event, and it 
can lead to water and food crises (Hao et al., 2014). In 
2014, weather disasters (droughts and forest fires) have 
caused losses of US$ 11.3 billion, which represented 

an increase of 48.8% in the average damage occurred 
between 2004 and 2013 (Guha-Sapir et al., 2015). 
Damage caused by droughts and forest fires grew from 
4.7%, in the 2004–2013 period, to 11.4% in 2014. The 
2014-drought in Brazil afflicted 27 million victims, 
and it was the fourth drought event with greatest 
human impact since 2004, with damages amounting 
up to US$ 5 billion (Guha-Sapir et al., 2015).

DOI: 10.1590/S0100-204X2017001100012


1064 M.C.A. Picoli et al.

Pesq. agropec. bras., Brasília, v.52, n.11, p.1063-1071, nov. 2017 
DOI: 10.1590/S0100-204X2017001100012 

According to Pachauri & Meyer (2014), warm 
daytime temperatures will become more frequent 
and have greater magnitude, favoring the occurrence 
of drought events. In this sense, understanding and 
quantifying the impacts of these events on agriculture 
is very important. Therefore, indices based on climatic 
and meteorological observations have been created for 
this purpose, such as the palmer drought severity index 
(PDSI), crop moisture index (CMI), surface water 
supply index (SWI), and standardized precipitation 
index (SPI).

Vicente-Serrano et al. (2010) described a multiscale 
drought index – the standardized precipitation-
evapotranspiration index (SPEI) –, which uses 
precipitation and temperature data alone. It is simply 
based on a normalization of data from the water 
balance obtained with the Thornthwaite method. 
Few differences exist between the SPEI and the self-
calibrated palmer drought severity index (sc-PDSI) 
and the standardized precipitation index (SPI) (Zhao 
et al., 2015; Chen et al., 2016; Le et al., 2016; Wang 
et al., 2016). However, divergence was observed in 
the indices when a progressive temperature increase 
of 2 to 4°C was added to the historical series used to 
simulate climate change.

Among the tools developed in recent decades, 
remote sensing has proven to be very promising to 
improve the calculation and monitoring of drought 
events. Vegetation indices and drought, humidity, 
and surface temperature data derived from satellite 
images are used to this end (Ghulam et al., 2007). Gu 
et al. (2007) reported significant correlations between 
normalized difference vegetation index (NDVI), 
obtained from Modis images, calculated every 16 
days, and drought. Tadesse et al. (2005) showed that 
when using NDVI, despite it is an effective indicator 
of humidity and vegetation conditions, there is a lag 
between the occurrence of drought event and the 
change in its values, which indicates that this index is 
not appropriate to monitor drought conditions of crops, 
in real time conditions.

Despite the existence of some drought identification 
indices, there is still no drought monitoring system for 
sugarcane. This represents a setback, because global 
climate change is affecting this crop, which is planted 
in over 10 million hectares only in Brazil, according 
to Brazilian Sugarcane Industry Association (Unica, 

2015). Sugarcane products represented 43.5% of 
renewable source for the Brazilian energy matrix, in 
2014, and water availability is one of the main factors 
influencing their production. 

To this end, the spectral indices were correlated 
with the meteorological drought index, the SPEI. This 
study, besides helping in the understanding of the 
use of remote sensing images for identifying drought 
events, provides a tool for quantifying the losses due 
to drought in Brazil, which can generate crop alerts. 
If the effectiveness of these indices is confirmed with 
sugarcane drought monitoring, it will be possible to 
create a warning system using such indices and other 
meteorological variables.

The objective of this work was to evaluate the 
potential of several spectral indices, calculated using 
moderate resolution imaging spectroradiometer 
images, in identifying drought events in sugarcane 
crops.

Material and Methods

The studied area is located in the municipality of 
Descalvado, in the state of São Paulo (22°03'16" to  
21°42'10"S and 47°47'38" to 47°30'33"W) – that state 
is one of the largest producers of sugarcane in Brazil, 
with a yield of 1.7 million tons of sugarcane culms in 
2013 (IBGE, 2016) –, in a 20,000-ha area owned by the 
Usina Ipiranga. The soil in the area is predominantly 
Oxisol, with slopes ranging 3–9% (declivity).

The climate is Cwa, according to the Köppen 
classification, indicating humid temperate climate 
with dry winter and hot summer. The average annual 
rainfall is 1,509 mm, and the driest month is July, with 
27-mm rainfall and temperature around 18°C, and the 
wettest month is January, with 273-mm precipitation 
and average temperature of 24°C (CEPAGRI, 2016).

This study was carried out using sugarcane “pure 
pixels” with the same pixel size of the Modis images 
used (500 x 500 m). All pure pixels were selected 
within the sugarcane plots, inside the limits of the 
Usina Ipiranga. A grid with the 500x500 m pixels 
was created from MOD09A1 (Terra) and MYD09A1 
(Aqua) images, of the product Modis Terra/Aqua 
Surface Reflectance 8-Day L3 Global 500 m. The 
8-day surface reflectance indicates that the best image 
within the 8 day-window is used. This method implies 
the lowest possible influence of clouds or aerosols. 
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Thus, only those pixels totally inside the sugarcane 
areas – pure pixels of sugarcane – were selected. 
A total of 83 pure pixels were determined inside the 
mill lands. Factors such as ratoon stage, variety, and 
harvest time were also isolated. To homogenize the 
analysis, only pixels with similar characteristics were 
chosen. The selected sugarcane varieties have medium 
or late maturing cycle, in order to isolate any external 
factors that could affect the spectral indices.

Precipitation data from an automated weather 
station of the Instituto Agronômico de Campinas 
(IAC), located in Descalvado, were used. Monthly 
rainfall was compared with the historical average for 
this weather station. The crop seasons of 2008/09 and 
2009/10 had four months with rainfall values greater 
than their monthly historical averages. However, the 
seasons 2007/08 had only two months, and 2013/14 
only one month, with greater precipitation.

This study used the standardized precipitation-
evapotranspiration index (SPEI), developed by 
Vicente-Serrano et al. (2010) as an indicator that 
standardizes the rainfall in a given region, indicating 
deficits and surpluses. The SPEI uses the monthly 
(or weekly) difference between precipitation and 
potential evapotranspiration (PET). The calculation 
of this is similar to that of SPI, but instead it sums 
the climatic water balance, defined as the difference 
between precipitation and PET (Vicente-Serrano et al., 
2010). Many authors used SPI to check meteorological 
drought and, thus, to check if the vegetation suffered 
with agricultural drought (Zhang & Liang, 2010; 
Caccamo et al., 2011; Ezzine et al., 2014). These 
authors, therefore, present the SPI as a functional 
and quantitative indicator of drought, which should 
be analyzed in time scale. The SPI is considered to 
represent a drought event when it reaches the value≤-1. 

SPEI was estimated with periods of 1, 3 (current 
month and the previous two), and 6 months (current and 
the previous five). These periods were chosen because 
they are suitable for agricultural drought identification 
(WMO, 2012). SPEIs were used in each studied month 
(October to April), in the crop years 2007/08, 2008/09, 
2009/10, and 2013/14.

The SPEI indices were used to verify whether the 
influence of meteorological drought occurs instantly 
on sugarcane, or if it has a slow effect, as reported by 
Caccamo et al. (2011), using SPI indices, calculated 

every 6 months, correlated with drought spectral 
indices for forest and understory. These authors 
observed that the indices calculated for this period had 
a clearer separation between drought and non-drought 
periods.

SPEIs were obtained using the CRU TS3.0 dataset, 
at a spatial resolution of 0.5°. This dataset has an 
open source and is available on the Spanish National 
Research Council (CSIC) webpage, in three different 
formats: NetCDF, binary raster, and plain text 
(Vicente-Serrano et al., 2010). 

Images of Terra and Aqua satellites were used due to 
their different times of passage. In state of São Paulo, 
the Terra satellite passes at about 11:00 AM (-3GMT), 
while Aqua passes at 1:00 PM (-3GMT) (NASA, 2015). 
At 1:00 PM, the temperature is higher and, therefore, 
the sugarcane plants have their stomata closed (Smith 
et al., 2005). The greater amount of sugarcane stomata 
open at 11:00 AM changes the plant reflectance in the 
infrared region.

During image acquisition, a flaw was detected in 
the band 5 of the product MOD09A1. This flaw is 
reported in Wang et al. (2011), who argued that, in 
some places, the use of this band (1,230–1,250 nm) 
may harm the results. Image processing involves their 
reprojection for geographic coordinates WGS84, with 
the software IDL 8.3. This processing is automated and 
also involves analysis of the band quality to discard 
images that are highly affected by clouds. The pixels 
were kept with spatial resolution of 500 m.

The spectral indices were calculated using the red, 
near infrared, and shortwave infrared bands. Thus, 
the vegetation and the influence of climatic variables 
on its development were monitored. These indices 
are not sensitive to changes in soil (e.g., moisture) 
and in atmosphere, as shown by Ceccato et al. (2001). 
Therefore, changes in them are exclusively due to 
changes in plants.

The combined use of spectral bands can provide 
information on water content of the plant. Eight 
spectral indices were selected, all effective in drought 
identification: Hardisky et al. (1983), Hunt & Rock 
(1989), Gao (1996), Zarco-Tejada & Ustin (2001), 
Chuvieco et al. (2002), Ceccato et al. (2002), Gu et al. 
(2007), and Jiang et al. (2008). They were tested as to 
their ability in detecting drought in sugarcane, using 
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images from October to April of the crop years of 
2007/08, 2008/09, 2009/10 and 2013/14 (Table 1).

For the calculation, an application was developed 
in IDL 8.3, in order to automate the process. This 
application opens the images, copies the metadata, 
and identifies the image size, pixel size, projection and 
coordinate system. The indices were calculated one 
by one, using the reflectance images of Modis bands 
(Terra and Aqua satellites). Therefore, an image of each 
index was obtained for each date analyzed, accounting 
for a total of 3,440 images.

A database was organized with the values of the 
indices and of the bands, for each selected pure pixel. 
The procedure extracted the series in a chronological 
scale, for all indices and in every year, with further 
tabulation for comparisons with other data.

MOD09A1 and MYD09A1 products provide data 
every eight days. However, to match SPEI data scale 
(monthly), this study used the monthly median for 
each index. The median was used instead of the mean 
because it is not as much affected by extreme values 
(Oldford et al., 2006).

Drought induces abnormalities in spectral response 
and, therefore, data were standardized. In addition, 
this procedure reduces spatial variation influence in 
vegetation type and in land cover (Caccamo et al., 2011). 
The following expression was used for normalization: 

Zkxy = (SIkxy - µkx)/σkx

where Zkxy is the value of Z for the pure pixel k during 
the month x, in the year y; SIkxy is the spectral index 
value for the pure pixel k during the month x, in the 
year y; µkx is the spectral index mean value for the 
pure pixel k during the month x, in the n years studied; 
and σkx is the standard deviation of pure pixel k during 
the month x, in n years (Saleska et al., 2007). The 
Z value of each month was calculated for the crop 
years 2007/08, 2008/09, 2009/10 and 2013/14 (time 
n), in order to obtain the mean values during the crop 
vegetative stage: germination, tillering, and elongation 
of stems (Steduto et al., 2012). This vegetative period 
occurred from October to April, in the selected pure 
pixels.

The first step in the performed data analysis 
consisted of detecting the drought seasons, using the 
SPEI data for the vegetative season, of the crop years 
2007/08, 2008/09, 2009/10 and 2013/14. SPEI values 
calculated monthly, quarterly, and six-monthly were 
also considered for defining drought severity, taking 
into account a possible lag between patterns of rainfall 
and vegetation response (Quiring & Ganesh, 2010).

The studied period (October to April) was selected 
because all plots were in the vegetative and in the 
yield formation stages (Doorenbos & Kassam, 1979); 
and elongation of leaves and stalks are much more 
sensitive than photosynthesis to water stress (Steduto 
et al., 2012). 

The second step in the analysis consisted of the 
analysis of data (spectral indices and meteorological 
data) distribution and of establishing the correlation 
between indices (pure pixels monthly calculated 
and standardized) and SPEI, throughout the studied 
period. A Shapiro-Wilk normality test was calculate 
for spectral indices and meteorological data. As SPEI 
data were not normal distribution at 5% probability, 
the Spearman correlation coefficient was used.

The period with the highest correlation between 
monthly calculated indices and SPEI data was 
scrutinized as the last step in the analysis.

Table 1. Spectral indices used for drought monitoring: 
NDVI, Normalized Difference Vegetation Index; EVI2, 
Enhanced Vegetation Index; GVMI, Global Vegetation 
Moisture Index; NDI6 and NDI7, Normalized Difference 
Infrared Index; NDWI, Normalized Difference Water 
Index; SRWI, Simple Ratio Water Index; and MSI, Moisture 
Stress Index.

Index Equation(1) Reference
NDVI NIR – RED 

NIR + RED
Tucker (1979)

EVI2    NIR – RED2.5 (NIR + 2.4 RED + 1) Jiang et al. (2008)

GVMI (NIR + 0.1) – (SWIR1 + 0.02)
(NIR + 0.1) + (SWIR1 + 0.02)

Ceccato et al. (2002)

NDI6 NIR – SWIR1

NIR + SWIR1

Hardisky et al. (1983)

NDI7 NIR – SWIR2

NIR + SWIR2

Chuvieco et al. (2002)

NDWI NIR – SWIR
NIR + SWIR

Gao (1996)

SRWI NIR
SWIR

Zarco-Tejada & Ustin (2001)

MSI NIR
SWIR2

Hunt & Rock (1989)

(1)RED, Band1; NIR, Band2; SWIR, Band5; SWIR1, Band6; and SWIR2, 
Band7.
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Results and Discussion

The SPEI (1 month) values calculated for January and 
February were the ones that effectively distinguished 
the years considered dry (only 2013/2014, in this work), 
from those considered normal (2007/08 and 2008/09) 
or rainy (2009/10).

The 2007/08 crop year was considered normal, 
since SPEI values (1 month) between November and 
April ranged between 0 and 1.

The 2008/09 crop year was also considered normal, 
although it presented a negative (near normal) SPEI (1 
month) value in the months of December, February, 
and March. Intense rainfall events in the months of 
October to December (320 mm) were responsible for 
the characterization of this crop year as normal. As for 
the 2009/10 crop year, it was considered rainy due to 
the high SPEI values for 1, 3, and 6 months.

In the crop year of 2013/14, SPEI values (1 month, 
3 months or 6 months) were negative from December 
to February, due to below-average precipitation for 

the entire period. According to the Annual Disaster 
Statistical Review of 2014 (Guha-Sapir et al., 2015), 
the drought occurred in Brazil in 2014 made 27 million 
victims, placing it fourth in drought events with the 
greatest human impact since 2004.

SPEI values didn’t show spatial variation in the 
studied area, with the spatial resolution used.

The correlations between SPEI values (1, 3, and 6 
months) and spectral indices are shown in Table 2. 
All the harvest years (2007/08, 2008/09, 2009/10 and 
2013/14) were analyzed jointly in their calculation. The 
GVMI index (MYD) showed a positive and significant 
Spearman correlation (ρ=0.65) with SPEI (1 month) 
in November. This result was probably due to the fact 
that this index provides quantitative information on 
the water content in the vegetation and, in the month of 
November, the precipitation was above that registered 
by the climate normal, in all the harvest years.

January had the highest frequency of indices with 
significant correlations with SPEI (1 month), but they 
were all negative (Table 2). This was because a lower 

Table 2. Spearman Correlation between spectral indices and 1, 3, and 6-month SPEI values, calculated for each month, in 
the four crop years evaluated.

Month NDVI_
MOD

NDVI_
MYD

EVI2_
MOD

EVI2_
MYD

GVMI_
MOD

GVMI_
MYD

MSI_
MOD

MSI_
MYD

NDI6_
MOD

NDI6_
MYD

NDI7_
MOD

NDI7_
MYD

NDWI_
MOD

NDWI_
MYD

SRWI_
MOD

SRWI_
MYD

SPEI (1 month) data
Oct. 0.24 0.24 0.27 0.16 -0.2 -0.46* 0.20 0.23 -0.05 -0.07 0.17 0.22 -0.11 -0.08 -0.11 0.01
Nov. -0.09 -0.12 -0.03 0.07 0.39* 0.65** 0.24 0.11 0.25 -0.06 0.23 0.06 0.30 0.13 0.29 0.13
Dec. -0.31 -0.39* -0.19 -0.45 0.19 -0.06 -0.23 -0.17 -0.11 -0.12 -0.23 -0.14 -0.07 -0.10 -0.04 -0.13
Jan. -0.41 -0.44 -0.60 -0.45* -0.19 -0.47* -0.17 -0.56** -0.22 -0.42* -0.21 -0.57** -0.42* -0.45* -0.48* -0.56**
Feb. 0.04 -0.14 0.05 -0.28 -0.32 0.06 -0.05 -0.22 -0.16 -0.14 -0.07 -0.18 -0.23 -0.19 -0.21 -0.41*
Mar. -0.11 0.45* 0.06 0.38* -0.11 0.08 -0.06 -0.06 -0.15 0.17 -0.06 -0.04 -0.25 -0.04 -0.25 0.07
Apr. -0.64 -0.4* -0.25 -0.64** -0.1 -0.47* -0.59** -0.52** -0.6** -0.33 -0.58** -0.52** -0.23 -0.39* -0.23 -0.3

SPEI (3 months) data
Oct. 0.24 0.24 0.27 0.16 -0.16 -0.46* 0.20 0.23 -0.05 -0.07 0.17 0.22 -0.11 -0.08 -0.11 0.01
Nov. -0.06 0.16 0.04 0.32 -0.32 -0.54** -0.03 0.07 -0.21 0.01 -0.04 0.13 -0.26 -0.07 -0.25 0.0
Dec. -0.31 -0.39* -0.19 -0.46* 0.19 -0.06 -0.23 -0.17 -0.11 -0.12 -0.23 -0.14 -0.07 -0.10 -0.04 -0.13
Jan. -0.31 -0.46* -0.39* -0.54** -0.03 -0.17 -0.12 -0.46* -0.13 -0.25 -0.15 -0.47* -0.17 -0.36 -0.25 -0.54**
Feb. 0.05 0.20 0.0 0.06 -0.17 0.21 -0.07 -0.01 -0.16 -0.12 -0.09 0.04 -0.02 -0.07 0.0 -0.28
Mar. 0.12 0.09 0.27 0.0 0.43* 0.52** 0.12 0.47* 0.18 0.21 0.11 0.49** 0.16 0.51** 0.16 0.32
Apr. 0.06 0.04 -0.05 -0.02 -0.24 0.42* -0.09 0.05 -0.08 0.21 -0.09 0.07 0.02 0.15 0.02 0.0

SPEI (6 months) data
Oct. 0.28 0.38* 0.34 0.34 0.02 -0.31 0.37 0.48** -0.03 0.29 0.32 0.46* -0.06 0.14 -0.06 0.09
Nov. -0.04 0.24 0.09 0.392* -0.22 -0.15 0.10 0.11 -0.13 0.09 0.08 0.15 -0.13 0.0 -0.13 -0.06
Dec. -0.31 -0.39* -0.19 -0.46* 0.19 -0.06 -0.23 -0.17 -0.11 -0.12 -0.23 -0.14 -0.07 -0.10 -0.04 -0.13
Jan. -0.41* -0.44* -0.6** -0.45* -0.2 -0.47* -0.174 -0.56** -0.22 -0.42* -0.20 -0.57** -0.42* -0.45* -0.48* -0.56**
Feb. 0.05 0.20 0.0 0.06 -0.17 0.21 -0.07 -0.01 -0.16 -0.12 -0.09 0.04 -0.02 -0.07 0.0 -0.28
Mar. 0.12 0.09 0.27 0.0 0.42* 0.518** 0.12 0.475* 0.18 0.21 0.11 0.49** 0.16 0.51** 0.16 0.32
Apr. 0.02 -0.02 0.16 0.09 0.22 0.17 -0.17 -0.02 -0.13 -0.01 -0.17 0.0 0.20 0.16 0.20 0.08

*and**Significant at 5 and 1% probability, respectively.
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volume of precipitation may result in lower values 
of SPEI, when it is calculated for a period with high 
rainfall volumes (values above the climate normals), 
as occurred in January, in the 2013/14 harvest. In 
January, sugarcane was in the vegetative phase, 
so the plant was in the phenological stage with the 
greatest sensitivity to the water deficit (FAO, 2015). 
Those negative correlations, therefore, indicated that 
the spectral indices did not present the same trend as 
the SPEI, since this index presented positive values 
(precipitation above the climate normals). That is, in 
most harvests, the precipitation volumes in January, 
although high, were not sufficient to meet the needs 
of the plants.

In March, positive correlations were observed 
between the spectral indices NDVI (MYD) and EVI2 
(MYD), and SPEI (1 month) (Table 2). The positive 
values in March for SPEI (1 month) and the spectral 
indices were due to the higher precipitation in February 
and March – 204 and 207 mm in 2007/08; 228 and 
168 mm in 2008/09; and 161 and 123 mm in 2009/10 
–, except for the 2013/14 harvest. Zhang et al. (2013) 
also observed that on agricultural land, the NDVI is 
sensitive to precipitation, showing time gap of 16 to 
24 days.

In April, the correlations were, again, negatively 
significant, as the spectral indices had negative values, 
and the SPEI (1 month) had positive values. In this 
month, the sugarcane was in the end of productivity 
formation period, and beginning of the maturation 
period. Therefore, the lower values of the spectral 
indices were due to the lower physiological activity in 
that moth, compared to the previous ones.

Rhee et al. (2010) observed that the spectral 
response of the agricultural vegetation shows stronger 
correlations with the long-term dry periods (i.e., SPI 
of 3 and 6 months). Therefore, for the 1-month period, 
positive correlations between the spectral indices and 
the SPEI were not expected. Jain et al. (2010), comparing 
the NDVI and WSVI (water supply vegetation index) 
with the SPI values calculated for 1, 3, 6, 9, and 12 
months, observed that the impact of precipitation on 
vegetation does not occur instantaneously; rather, it 
is cumulative. In most cases, precipitation that occurs 
in 1 month does not strongly affect vegetation in that 
month.

The SPEI calculated for 3 months (Table 2) did not 
show significant correlations with spectral indexes 
from October to December. However, in January 
some spectral indices showed significant negative 
correlation with SPEI (3 months): NDVI (MYD), 
EVI 2 (MOD and MYD), MSI (MYD), NDI7 (MYD) 
and SRWI (MYD). In March, the correlations were 
positive between SPEI (3 months) and GVMI (MOD 
and MYD), MSI (MYD), NDI7 (MYD), and NDWI 
(MYD), with high correlation values, following the 
Rhee et al. (2010) hypothesis. An explanation for the 
higher correlation of the Modis Aqua (MYD) satellite 
spectral indices with the SPEI data may be related to 
the fact that this satellite captures images (Descalvado) 
at around 13:00 in the studied area (Descalvado, SP, 
Brazil). At this hour of the day, the temperature is 
higher and the sugarcane plants have closed stomata. 
Consequently, there is less water loss and, therefore, 
higher reflectance in the medium-infrared region, 
which are the bands present in the indices: GVMI, 
MSI, and NDI7.

The correlation between spectral indexes and 
6-month SPEI values (Table 2) was negative in 
January, for most of the spectral indices. This result 
agrees with the ones for SPEI time intervals of 1 and 
3 months. In March, similarly to what was observed 
for SPEI (3 months), the correlations observed between 
SPEI (6 months) and the spectral indices GVMI (MOD 
and MYD), MSI (MYD), NDI7 (MYD), and NDWI 
(MYD) were significant. According to the literature 
(Caccamo et al., 2011; Sow et al., 2013), the indices 
using the bands 2 (near infrared, NIR), and 6 and 7 
(infrared-medium, SWIR) have greater potential to 
identify drought events in vegetation. The same was 
observed in this study.

The correlations between the spectral indices 
GVMI (MOD and MYD), MSI (MYD), NDI7 (MYD), 
and NDWI (MYD) and SPEI (3 and 6 months) values, 
in March, were significant for all years considered 
(Figure 1). In March, the indices showed the same 
trend as SPEI’s, except for the NDI7 in 2010, which 
showed negative values, while SPEI indicated positive 
values. In 2014, the year that the drought caused great 
damage to sugarcane crops in Brazil, all spectral 
indices were negative. This indicates the sensibility 
of Modis indices in detecting drought in sugarcane, 
especially in dry years.

http://dx.doi.org/10.1590/S0100-204X2017001100012


Identifying drought events in sugarcane using drought indices derived from Modis sensor 1069

Pesq. agropec. bras., Brasília, v.52, n.11, p.1063-1071, nov. 2017
DOI: 10.1590/S0100-204X2017001100012

Conclusions
1. The Modis sensor is able to detect drought events 

in sugarcane crops, particularly with Modis data from 
Aqua satellite.

2. The spectral indices GVMI (MOD and MYD), 
MSI (MYD), NDI7 (MYD), and NDWI (MYD) are 
effective in drought detection for sugarcane, showing 
significant correlations with SPEI data.

3. SPEI analysis with 1, 3, and 6 months have similar 
trends (drought or not). 

4. The absence of spatial variation for the SPEI 
data, with the resolution available for this study (0.5°), 
hinders their contrast with the Modis data.
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