TOLERÂNCIA DE CULTIVARES DE ARROZ AO ALUMÍNIO¹

REINALDO DE PAULA FERREIRA, LUIS TARCÍSIO SALGADO² • HAROLDO DUARTE JORGE³

RESUMO - Conduziu-se um experimento de campo, em um Latossolo Vermelho-Amarelo com elevada saturação de alumínio, com o objetivo de selecionar cultivares de arroz (Oryza sativa L.) quanto à tolerância ao alumínio. O delineamento experimental utilizado foi o de blocos ao acaso, em parcelas subdivididas, com três repetições. Utilizaram-se dois níveis de saturação de alumínio (77% e 18%) nas parcelas e 30 cultivares de arroz nas subparcelas. Com base na produção média de grãos em alto nível de alumínio e num parâmetro denominado Al_t, que estima a resposta ao calcário, as cultivares foram classificadas em quatro grupos: tolerantes e não responsivas (TNR); tolerantes e responsivas (TR); sensíveis e responsivas (SR) e sensíveis e não responsivas (SNR). As cultivares dos grupos TNR e TR foram selecionadas por apresentarem tolerância à toxidez de alumínio.

Termos para indexação: toxidez de alumínio, Oryza sativa.

TOLERANCE OF RICE CULTIVARS TO ALUMINUM

ABSTRACT - A field experiment was conducted, in a Yellow Red Latosol with high aluminum saturation, with the objective to select rice (*Oryza sativa* L.) cultivars concerning to aluminum tolerance. The experimental design utilized was randomized blocks, with split-plots, with three replications. Two levels of aluminum saturation (77% and 18%) were applied in the whole-plots, and 30 rice cultivars in the sub-plots. Based on mean grain production under high aluminum level and its Al_t parameter, which estimates the response to lime, the cultivars were classified into four groups: tolerants and non-responsives (TRR); tolerants and responsives (TRR); sensitives and responsives (SRR) and sensitives and nonresponsives (SNR). The cultivars of the groups TNR and TR were selected for presenting tolerance to aluminum toxicity.

Index terms: aluminum toxicity, Oryza sativa.

INTRODUÇÃO

Em Rondônia, são vastas as áreas tendo alto teor de alumínio trocável (Empresa Brasileira de Pesquisa Agropecuária 1983). Uma alternativa para melhorar a fertilidade desses solos é a incorporação profunda de corretivos. Entretanto, as técnicas atualmente disponíveis para este fim são consideradas impraticáveis, quer por não ser conhecida uma metodologia que permita controlar adequadamente o alumínio permutável na parte subsuperficial dos solos, quer por conseqüência de custos dos corretivos e de sua aplicação, quer pela grande extensão de áreas formadas por solos apresentando essa acidez nociva em grau considerável (Olmos & Camargo 1976). Particularmente em Rondônia, a dificuldade de correção é ainda muito maior,

pois a aplicação de calcário é inviável nos primeiros anos após o desmatamento em conseqüência da presença de tocos remanescentes da queimada.

O efeito primário da toxidez de alumínio manifesta-se, geralmente, bloqueando o crescimento radicular, possivelmente, por afetar o alongamento e a divisão celular, diminuindo, assim, o volume de solo explorado pelas raízes (Sampson et al. 1965, Klimashevskii & Dedov 1976). É comumente aceito que o alumínio afeta a divisão celular por aumentar a estabilidade da dupla hélice, dificultando portanto, a replicação da DNA na interfase (Morimura & Matsumoto 1978) e o alongamento celular por reduzir a plasticidade e a elasticidade da parede celular (Klimashevskii & Dedov 1976). Nessas condições, as plantas não conseguem obter água e nutrientes do subsolo adequadamente, tornando-se assim, menos produtivas (Foy 1974).

A opção que tem sido considerada mais promissora para contornar esse problema é a exploração do potencial genético das cultivares, pois sabe-se que espécies e variedades diferem amplamente na tolerância ao excesso de alumínio (Armiger et

Aceito para publicação em 28 de março de 1986.

Eng. - Agr., M.Sc., EMBRAPA/Unidade de Execução de Pesquisa de Ambito Estadual de Porto Velho (UEPAE de Porto Velho), Caixa Postal 406, CEP 78900 Porto Velho, RO.

Químico, M.Sc., EMBRAPA/UEPAE de Porto Velho.

al. 1968, Foy 1974, Lafever et al. 1977, Mugwira et al. 1976, Foy et al. 1978, Fageria & Zimmermann 1979, Rhue 1979).

O objetivo desse trabalho foi selecionar cultivares de arroz tolerantes à toxidez de alumínio, bem como fornecer germoplasmas com estas características ao programa de melhoramento. A identificação e seleção desses genótipos trarão, inevitavelmente, vantagens, independente do grau de tecnologia utilizado.

MATERIAL E MÉTODOS

Este ensaio foi conduzido no campo experimental da Unidade de Execução de Pesquisa de Âmbito Estadual (UEPAE de Porto Velho), RO, em um Latossolo Vermelho-Amarelo com 90% de saturação de alumínio. A análise química de amostras de solo da área experimental, coletadas a uma profundidade de 0 cm a 20 cm, antes da aplicação do calcário, revelou os seguintes resultados: pH em água (1:2,5):4,4; Al⁺⁺⁺ (meq/100 g de solo): 3,4; Ca⁺⁺ + Mg⁺⁺ (meq/100 g de solo); 0,3: P (ppm): 3; K (ppm): 56 e matéria orgânica (%): 3,3. Determinaram-se os teores de Al e de Ca + Mg utilizando-se como extrator uma solução de KCl 1N e, de P e K, Mehlich-1 (Vettori 1969). Já para a matéria orgânica usou-se o método de Walkley-Black (Vettori 1969).

O delineamento experimental foi blocos ao acaso, em parcelas subdivididas, com três repetições. Utilizaram-se dois níveis de saturação de alumínio nas parcelas (77% e 18%) e 30 cultivares de arroz nas subparcelas. O nível de 18% foi determinado na época da floração e obtido com a aplicação de 6 t/ha de calcário dolomítico (PRNT = 66%), três meses antes da semeadura do arroz, sendo distribuído manualmente em toda superfície das parcelas e incorporado à profundidade de 20 cm, mediante o uso de uma grade tipo Rome. Na área onde não se aplicou calcário houve redução da saturação de alumínio, em virtude, principalmente, da aplicação de superfosfato triplo e cloreto de potássio no plantio.

A adubação básica foi aplicada nas proporções de 40 kg/ha de N como sulfato de amônio, 60 kg/ha de K₂O como cloreto de potássio, 100 kg/ha de P₂O₅ como superfosfato triplo e 50 kg/ha de FTE BR-12 como fonte de micronutrientes. Um terço do N foi aplicado na semeadura e, o restante, no início dos primórdios florais. Já o P, o K e os micronutrientes foram aplicados na semeadura e misturados ao solo.

As cultivares de arroz foram semeadas em parcelas constituídas de quatro fileiras de 5 m de comprimento, no espaçamento de 0,5 m, com densidade de semeadura de 60 sementes/m linear. Foram colhidos os grãos das duas fileiras centrais, eliminando-se 0,5 m de cada extremidade.

RESULTADOS E DISCUSSÃO

A produção de grãos foi usada como critério para diferenciação das cultivares tolerantes e sensíveis. Um parâmetro denominado Al_t, que estima a resposta ao calcário, foi calculado pela seguinte fórmula (Fageria & Kluthcoushi 1980):

Al_t:

Produção com baixo nível de Al - Produção com alto nível de Al

Diferença entre saturação de Al sem e com calcário na floração

A produção das diferentes cultivares no alto nível de Al e seu correspondente Al_t foram representados nos eixos X e Y do sistema de coordenadas cartesianas, respectivamente. Calculou-se, também, a média de produção sob alta saturação de Al e a média de Al_t. O diagrama foi, então, dividido em quadrantes, permitindo, portanto, separar quatro grupos de cultivares (Fig. 1):

- cultivares tolerantes e não responsivas (TNR): produzem bem em altos níveis de Al mas não respondem a níveis crescentes de calagem;
- cultivares tolerantes e responsivas (TR): produzem bem em altos níveis de Al e respodem a níveis crescentes de calagem;
- cultivares sensíveis e responsivas (SR): produzem pouco em altos níveis de Al mas respondem a níveis crescentes de calagem;
- cultivares sensíveis e não responsivas (SNR): produzem pouco em altos níveis de Al enão respondem a níveis crescentes de calagem.

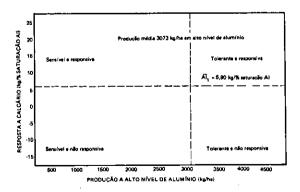


FIG. 1. Avaliação de cultivares de arroz a baixo e alto nível de alumínio.

Na Tabela 1, encontra-se a classificação das cultivares por grupo. Das 30 cultivares testadas quinze apresentaram-se como tolerantes e não responsivas, cinco como tolerantes e responsivas, oito como sensíveis e responsivas e duas como sensíveis e não responsivas. Nota-se que mesmo sendo o arroz uma espécie considerada adaptada às condições ácidas do solo, existem diferenças varietais marcantes com relação à sensibilidade à toxidez de alumínio e resposta à aplicação de calcário. Fageria & Zimmermann (1979) também detectaram tolerâncias diferenciais à toxidez de alumínio em cultivares de arroz utilizando-se como substrato a solução nutritiva.

As cultivares dos grupos TNR e TR são mais adequadas para as áreas de solos com alto teor de alumínio que estão sendo desmatadas em Rondônia, onde a aplicação de calcário é impraticável nos primeiros anos em decorrência da presença de tocos remanescentes da queimada. As cultivares do grupo TR apresentaram tolerância à toxidez de alumínio e ainda responderam à aplicação de calcário, sendo, portanto, recomendadas para cultivo sob alta e baixa tecnologia. As cultivares dos grupos SR e SNR deverão ser eliminadas por serem sensíveis à toxidez desse elemento e apresentarem, consequentemente, baixa produtividade.

Algumas cultivares responderam negativamente à aplicação de calcário e isto pode ser atribuído, possivelmente, à heterogeneidade do solo, diferença em densidade ou, até mesmo, tolerância desses genótipos à toxidez de alumínio.

TABELA 1. Avaliação de cultivares de arroz quanto à sua tolerância ao alumínio.

Cultivar/ inhagem	Produção com baixo nível de Al (kg/ha)	Produção com alto nível de Al (kg/ha)	Resposta a calcário (kg/% saturação de AI)	Classif.
CNA 4116	4.191	4.407	-3,66	TNR
GA 4216	3.951	4.029	-1,32	TNR
CNA 4154	3.901	3.942	-0.71	TNR
CNA 4146	3.875	4.125	-4,24	TNR
Lageado	3.616	3.501	1,95	TNR
CNA 4120	3.559	3.302	4,36	TNR
IAC 114	3.517	3.468	0,84	TNR
IAC 136	2.383	3.617	-3,95	TNR
IRAT 112	3.368	3.316	0,89	TNR
IAC 47	3.201	3.525	-5,49	TNR
CNA 4235	2.906	3.283	-6,38	TNR
CNA 791048	2.875	3.176	-5,10	TNR
CNA 4119	2.519	3.521	-16,99	TNR
GA 3488	3.990	3.659	5,60	TNR
GA 4160	3.437	3.125	5,79	TNR
GA 4172	4.383	3.472	15,45	TR
GA 4098	4.117	3.436	11,54	TR
GA 4141	4110	3.076	17,54	ŤR
CNA 4115	3.741	3.203	9,12	TR
Lebonnet	3.589	3.233	6,03	TR
IAC 164	3.788	2.792	16,88	SR
BR 1	3.750	2.670	18,30	SR
Salumpikit	3.675	3.025	12,39	SR
GA 4835	3.158	2.427	11.02	SR
GA 4834	2.834	1.608	20.77	SR
Labelle	2.588	2.237	5,95	SR
GA 4833	2.564	1.160	23,81	SR
GA 4193	2.309	547	29,86	SR
CNA 4123	3.188	3.016	2,91	SNR
CNA 4135	2.525	2.292	3,95	SNR

CONCLUSÕES

- 1. As cultivares de arroz diferem quanto à sensibilidade à toxidez de alumínio e resposta à aplicação de calcário.
- 2. Ao se recomendar calagem para a cultura do arroz deve-se levar em conta não apenas a acidez do solo, mas também a cultivar a ser utilizada.

REFERÊNCIAS

- ARMIGER, W.H.; FOY, C.D.; FLEMING, A.L.; CALD-WELL, B.W. Differential tolerance of soybean varieties to an acid soil high in exchangeable aluminium. Agron. J., 60:67-70, 1968.
- EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁ-RIA. Serviço Nacional de Levantamento e Conservação de Solos, Rio de Janeiro, RJ. Levantamento de reconhecimento de média intensidade dos solos e avaliação da aptidão agrícola das terras do Estado de Rondônia. Rio de Janeiro, 1983. 896p.
- FAGERIA, N.K. & KLUTHCOUSKI, J. Metodologia para avaliação das cultivares de arroz e feijão, para condições adversas de solo. Goiânia, EMBRAPA-CNPAF, 1980. 22p. (EMBRAPA-CNPAF. Circular técnica, 8)
- FAGERIA, N.K. & ZIMMERMANN, F.J.P. Seleção de cultivares de arroz para tolerância a toxidez de alumínio em solução nutritiva. Pesq. agropec. bras., 14:141-7, 1979.

- FOY, C.D. Effects of aluminium on plant growth. In: CARSON, E.W. The plant root and its environment. Charlottesville, Univ. Press of Virginia, 1974. p.601-42.
- FOY, C.D.; CHANEY, R.L.; WHITE, M.C. The physiology of metal toxicity in plants. Ann. Rev. Plant Physiol., 29:511-66, 1978.
- KLIMASHEVSKII, E.L. & DEDOV, V.M. Localization of the mechanisms of growth-inhibiting action of Al³⁺ in elongating cell wall. Sov. Plant Physiol., 28:1040-6, 1976.
- LAFEVER, H.N.; CHAMPBELL, L.G.; FOY, C.D. Differential response of wheat cultivars to Al. Agron. J., 69: 563-8, 1977.
- MORIMURA, S. & MATSUMOTO, H. Effect of aluminium on some properties and template activity of purified pea DNA. Plant Cell Physiol., 19:429-36, 1978.
- MUGWIRA, L.M.; ELGAWARY, S.M.; PATEL, K.I. Differential tolerance of triticale, wheat, rye and barley to aluminium in nutrient solution. Agron., J., 68:782-7, 1976.
- OLMOS, J1L. & CAMARGO, M.M. Ocorrência de alumínio tóxico nos solos do Brasil, sua caracterização e distribuição. Ci. e Cult., 28:171-80, 1976.
- RHUE, R.D. Differential aluminium tolerance in plants. In: MUSSEL, H. & STAPLES, R. Stress physiology in crop plants. New York, Cornell Univ., 1979. p.61-80.
- SAMPSON, M.; CLARKSON, D.T.; DAVIES, D.D. DNA synthesis in aluminium-roots of barley. Science, 148:1476-7, 1965.
- VETTORI, L. Métodos de análise de solo. Rio de Janeiro, EPFS, 1969. 24p. (Boletim técnico, 7)