UTILIZAÇÃO DE CULTIVARES DE MILHO PROLÍFICO NO CONSÓRCIO MILHO-FEIJÃO¹

JOSÉ CARLOS CRUZ², MAGNO ANTONIO PATTO RAMALHO³ B LUIS TADEU GRACA DE SALLES⁴

RESUMO - Visando verificar se cultivares de milho (Zea mays L.) selecionadas para major prolificidade poderiam compensar a redução na produvidade de grãos em decorrência da diminuição da população de plantas, tanto em monocultivo como em consórcio com o feijão (Phaseolus vulgaris L.), foram conduzidos três experimentos. Dois deles foram realizados no Centro Nacional de Pesquisa de Milho e Sorgo (CNPMS), em Sete Lagoas, MG, nos anos agrícolas de 1983/84 e 1984/85 e o outro na Escola Superior de Agricultura de Lavras (ESAL), Lavras, MG. ano agrícola 1984/85. Os tratamentos foram as cultivares de milho, e combinações de três populações de plantas (20, 40 e 60 mil plantas/ha), em monocultivo e em consórcio com o feijão. No sistema consorciado, a semeadura foi simultânea na mesma linha. A produtividade de graos do feijão respondeu linearmente à diminuição na população de milho. A produtividade média de grãos de milho na população de 20 mil plantas/ha foi 20% inferior à obtida na população de 40 mil plantas/ha quando se considerou a média dos três locais e os sistemas de plantio. O índice de espiga, porém, foi 30.8% superior, na menor população, quando comparado ao da maior população. As cultivares utilizadas apresentaram, de modo geral, desempenho semelhante, e foram igualmente afetadas pela presença do feijão e pelas alterações nas populações de plantas. Quando se avaliou a produção combinada de grãos de milho e feijão, observou-se que a maior produção de feijão nas menores populações compensou a redução na produção de grãos de milho observada nesta condicão.

Termos para indexação: Zea mays. Phaseolus vulgaris, densidade de plantas.

UTILIZATION OF PROLIFIC CORN CULTIVARS IN INTERCROPPING SYSTEMS WITH BEAN

ABSTRACT - Three experiments were conducted in order to verify whether or not corn (Zea mays L.) cultivars selected for prolificity could compensate for productivity reduction due to decrease in plant population, both in monoculture and intercropping with bean (Phaseolus vulgaris L.). Two of the experiments were conducted at the Centro Nacional de Pesquisa de Milho e Sorgo (CNPMS) at Sete Lagoas, MG, Brazil, in the years 1983/84 and 1984/85, and the other one at the Escola Superior de Agricultura de Lavras (ESAL), at Lavras, MG, Brazil, in 1984/85. The whole treatments were corn cultivars and a combination of three plant populations (20, 40 and 60 thousand plants/hectare), in monoculture and intercropping with beans. In the intercropping system, the planting was simultaneous in the same line. Bean productivity increased linearly with decrease in compopulation. Average corn productivity at the 20 thousand plants/ha level was 20% smaller compared to the productivity at the 40 thousand plants/ ha level, when considering the average of three places and of the other treatments. However, the ear index in the smaller population was 30.8% higher than the one at high population. The cultivars utilized presented similar behavior, being equally affected by the presence of bean and by plant population. When grain production was evaluated together (corn and bean), it was noted that an increase in beans productivity in the smaller populations compensated for the reduction in corn productivity in this condition.

Index terms: Zea mays, Phaseolus vulgaris, corn prolificity.

INTRODUÇÃO

No Brasil tem sido intensificada nos últimos anos a pesquisa com o consórcio de culturas, principalmente, em virtude da contribuição deste sistema de plantio no volume total da produção de grãos. Especialmente no caso do milho e feijão

Aceito para publicação em 2 de setembro de 1986

² Eng. - Agr., Ph.D., EMBRAPA/Centro Nacional de Pesquisa de Milho e Sorgo (CNPMS), Caixa Postal 151, CEP 35700 Sete Lagoas, MG.

³ Eng. - Agr., Ph.D., Escola Superior de Agricultura de Lavras (ESAL), Caixa Postal 37, CEP 37200 Lavras, MG.

Eng. - Agr., Estagiário da EPAMIG, ESAL.

em que o consórcio é o sistema mais amplamente utilizado, vários aspectos de manejo e recomendação de cultivares mais eficientes, têm sido o objetivo principal de inúmeros trabalhos já realizados.

Em relação à melhoria do manejo das culturas de milho e feijão, um dos enfoques que tem merecido maior destaque é o que se refere ao arranjo e a população de plantas destas culturas no consórcio (Araújo 1978, Aidar et al. 1979, Souza Filho & Andrade 1982, Chagas et al. 1983, Reis 1984). No caso da população de plantas, tem sido mostrado que a forte competição exercida pelo milho pode ser atenuada utilizando-se menores populações (Santa Cecília & Vieira, 1978, Aidar et al. 1979, Souza Filho & Andrade 1982). Contudo é sabido que a utilização de menores populações de milho contribuem para a redução na produtividade (Viegas et al. 1963, Galvão et al. 1969, Mundstock 1970, Novais et al. 1971, Usberti Filho 1972, Aidar et al. 1979).

Na procura de cultivares de milho que sejam mais eficientes para o consórcio, os inúmeros trabalhos já realizados ainda não evidenciaram diferenças marcantes entre os materiais avaliados em relação à melhoria da eficiência do consórcio. Deve ser enfatizado que foram avaliados nos últimos anos, cultivares de milho com ampla variação no porte e no ciclo, que como se imaginava eram características que provavelmente iriam propiciar diferenças no desempenho dos feijoeiros consorciados (Andrade et al. 1974, Pereira Filho 1981, Wijesinha et al. 1982, Geraldi 1983, Cruz et al. 1984, Ramalho et al. 1984).

A utilização de cultivares de milho prolífica tem sido considerada como promissora para melhorar a eficiência do consórcio. Francis (1981), comenta que a utilização de cultivares prolíficas de milho poderia compensar a redução na população de plantas de milho, produzindo um maior número de espigas. Desta forma, a redução da população de plantas visa a melhorar a eficiência do consórcio, pois poderia manter a produtividade do milho e incrementar a produtividade dos feijoeiros, como já foi salientado.

Em vários programas de melhoramento de milho em andamento no Brasil, o caráter maior prolificidade tem sido um dos objetivos principais. Considerando que estes materiais ainda não foram avaliados em consórcio com o feijão, foi conduzido o presente trabalho com o objetivo de verificar se as cultivares com maior prolificidade poderiam compensar a redução na produtividade de grãos em função da diminuição na população de plantas.

MATERIAL E MÉTODOS

Foram conduzidos três experimentos: dois, no Centro Nacional de Pesquisa de Milho e Sorgo (CNPMS), em Sete Lagoas, MG, durante os anos agrícolas de 1983/84 e 1984/85, e o outro, no Campo Experimental da Escola Superior de Agricultura de Lavras, MG, durante o ano de 1984/85.

O delineamento foi o de blocos casualizados, segundo um esquema de parcelas subdivididas, com três repetições. Os tratamentos das parcelas foram as cinco cultivares de milho, e os das subparcelas, uma combinação de três densidades de plantio em monocultivo e consórcio. Cada subparcela era constituída de quatro linhas de seis metros, constituindo a área útil as duas linhas centrais com cinco metros de comprimento.

As cultivares avaliadas no ano agrícola de 1983/84 foram: a) Piranão VD-1 x Piranão VD-2, híbrido intervarietal obtido no Instituto de Genética da ESALQ/USP, em Piracicaba, SP, cujos progenitores foram selecionados para o incremento da prolificidade. É um híbrido de porte baixo em decorrência da presença do alelo braquítico (br2); b) Piranão Prolífico - variedade proveniente da ESALQ/USP, e está sendo selecionada para o incremento da prolificidade. Possui também porte baixo em decorrência do alelo br2; c) BR 105 Prolífico - variedade de porte baixo em decorrência de polígenes. Este material foi obtido pelo programa de Melhoramento da Empresa Goiâna de Pesquisa Agropecuaria (EMGOPA); d) BR 126 - variedade do milho obtida no CMPMS em Sete Lagoas, MG. Possui porte alto; foi utilizada como testemunha; e) IAC. Hmd 7974 - híbrido duplo comercial, obtido pelo Instituto Agronômico de Campinas. É um material de porte alto, amplamente utilizado no Brasil.

No ano agrícola 1984/85, as cultivares Piranão VD-1 x x Piranão VD-2 e Piranão Prolífico foram substituídas pelas cultivares Piranão VD-2 e BR 200. A Piranão VD-2 possui características semelhantes as da Piranão Prolífico. A cultivar BR 200 é um híbrido experimental obtido pelo CNPMS; tem evidenciado boa prolificidade.

As populações de milho utilizadas foram de 20, 40 e 60 mil plantas/ha. Estas populações foram obtidas mantendo-se o mesmo espaçamento entre linhas de 1,0 m e variando o número de plantas/metro linear. Para atingir estas populações foi semeado o dobro de sementes necessárias em cada tratamento, tendo sido realizado o desbaste, posteriormente. No sistema consorciado, a cultivar Carioca foi semeada na mesma linha do milho, com uma densidade de dez plantas/m (100 mil plantas/ha). A semeadura foi simultânea e realizada durante os meses de

outubro e novembro. A adubação foi constante nos vários experimentos e foi equivalente a 300 kg/ha da fórmula 4-14-8 de N, P₂O₅ e K₂O, respectivamente, e mais 15 kg/ha de sulfato de zinco. Em cobertura foram aplicados 200 kg/ha de sulfato de amônio.

Para o milho foram avaliadas várias características, porém serão apresentados neste trabalho, apenas os dados do índice de espiga (número de espiga por planta) e a produção de grãos, em kg/ha. Para o feijão apenas a produção de grãos. Foi estimada também a produção equivalente de milho pela expressão apresentada por Ramalho et al. (1983), ou seja:

$$Y_e = Y_m + r Y_f$$

Onde:

Ye é a produção equivalente de milho;

Ym e Yf é a produção de grãos (kg/ha) de milho e feijão, respectivamente;

r é a relação de preços de feijão para milho. Neste caso, foi considerado r como sendo 4.5.

RESULTADO E DISCUSSÃO

Considerando inicialmente o feijão, deve ser mencionado que só ocorreu diferença significativa para o efeito das populações de plantas de milho nos três locais. A produtividade de grãos de feijão foi incrementada com a diminuição da população de plantas de milho. Constata-se pela Fig. 1, que apesar de o efeito de competição do milho sobre o feijoeiro ter sido linear, em todos os casos, sua intensidade variou entre os experimentos. Esta diferença ocorreu em função da amplitude de variação nas produtividades dos três experimentos. Especialmente no caso de Sete Lagoas, onde nos experimentos colocados no mesmo local, a diferença em produtividade foi em decorrência da distribuição irregular das precipitações durante o ano de 1984/85. Neste ano agrícola, as precipitações foram intensas nos meses de dezembro e janeiro, havendo precipitação quase todos os dias (Tabela 1). Este período coincidiu com as fases de florescimento, vingamento floral e maturação do feijoeiro, o que contribuiu para a acentuada redução na sua produtividade e também dificuldade na colheita. O excesso de precipitação nestes dois meses deve também ter prejudicado a cultura do milho, a qual exerceu menor competição sobre os feijoeiros. Como as equações de regressão entre as populações de milho e a produtividade do feijoeiro

foram lineares, pode-se utilizar o coeficiente linear da regressão como uma medida da competição sobre os feijoeiros das diferentes populações de milho. Por exemplo, observou-se que no experimento de Sete Lagoas, em 1983/84, quando a produtividade média dos feijoeiros foi maior, o efeito de competição exercida pelo milho, também foi mais acentuado (b = 12,76 kg/ha).

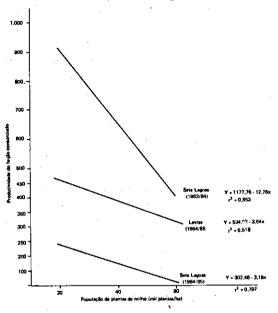


FIG. 1. Produtividade de grãos dos feijoeiros consorciados, em função de diferentes populações de milho, obtida em três experimentos. CNPMS. Sete Lagoas, MG. 1985.

Como já foi salientado, o efeito da população de plantas de milho no feijoeiro consorciado já foi constatado em outras oportunidades (Santa Cecília & Vieira 1978, Aidar et al. 1979, Souza Filho & Andrade 1982), e os dados obtidos no presente trabalho vieram comprovar estes resultados.

Não se constatou interação significativa entre a cultivar de milho utilizada e o desempenho do feijoeiro consorciado, isto é, a produtividade do feijão foi a mesma em presença das diferentes cultivares de milho (Tabelas 2, 3 e 4). Deve ser mencionado que as cultivares de milho avaliadas diferem em várias características, entre elas a altura das plantas. Estes resultados reforçam observações anteriores (Andrade et al. 1974, Fardim 1977, Perei-

ra Filho 1981, Wijesinha et al. 1982, Geraldi 1983, Cruz et al. 1984, Ramalho et al. 1984) de que as diferentes cultivares de milho avaliadas até então, não têm influenciado significativamente a produtividade dos feijoeiros consorciados.

Considerando-se a produtividade de grãos de milho, observou-se diferenças significativas entre as cultivares apenas no experimento de Lavras. De modo geral, os resultados evidenciaram que o desempenho das cultivares foi semelhante nos vários experimentos (Tabelas 2, 3 e 4). É importante salientar que no experimento de Lavras apenas ocorreu diferença significativa quando se comparou a cultivar BR 105 prolífica, com as demais. Contudo, esta diferença foi em decorrência, principalmente, da baixa produtividade desta cultivar, quando consorciada, na população de 20 mil plantas/ha.

A produtividade média de grãos do milho consorciado foi inferior à obtida no monocultivo. Na média dos vários tratamentos a redução na produtividade de grãos em consórcio foi de 17,8%, 6,6% e 9,8%, para os experimentos de Lavras, Sete Lagoas em 1983/84 e 1984/85, respectivamente (Tabelas 2, 3 e 4). Vale ressaltar que estas diferenças só não foram significativas no caso do experimento de Sete Lagoas, 1983/84. De modo geral, tem sido mostrado na literatura que o milho praticamente não sofre o efeito de competição da

leguminosa, embora em alguns casos tenham sido obtidas reduções na produção de milho consorciado, superiores à redução observada no experimento de Lavras (Andrade et al. 1974, Fardim 1977, Santa Cecília & Vieira 1978, Aidar et al. 1979, Reis 1984, Ramalho et al. 1984).

Não se constatou interação significativa para a produção de grãos de milho entre a densidade de plantio x sistema de cultivo e entre cultivar x sistema de cultivo, isto é, o efeito de competição do feijão sobre o milho independeu da população de plantas e das cultivares desta última cultura.

Tem sido considerado que dentre os componentes de produção do milho, o índice de espiga é o que sofre maior influência dos sistemas de plantio (Couto 1976, Reis 1984). Neste trabalho isto não foi constatado, uma vez que na média de todos os tratamentos e dos três experimentos, o índice de espiga do monocultivo foi de 1,14 e do consórcio de 1,09, ou seja, uma redução de apenas 4%.

Com relação à população de plantas, só não se detectou diferença significativa para a produtividade de grãos no experimento de Sete Lagoas, ano agrícola 1984/85. Considerando a média dos três locais, das cultivares de milho e dos dois sistemas de plantio, a produtividade de grãos na população de 40 mil plantas/ha foi 20% superior à produtividade obtida com 20 mil plantas/ha (Tabela 2, 3 e 4). Por outro lado, quando se avaliou o índice

TABELA 1. Precipitação pluvial (mm), por período (década) de outubro a abril, nos anos de 1983/84 e 1984/85 em Sete Lagoas, MG, e em 1984/85 em Lavras, MG.

Município	Precipitação (mm)										
	Período	Outubro	Novembro	Dezembro	Janeiro	Fevereiro	Março	Abril			
	Primeiro	00,0	40,9	127,9	29,8	0,00	75,2	54,3			
Sete Lagoas 1983/84	Segundo	132.1	98,1	90,1	0,00	2,2	9,9	0,00			
	Terceiro	42.6	96,6	66,6	161,7	3,3	28,0	0,00			
	Total	174,7	235,6	284,6	191,5	5,5	113,1,	54,3			
Sete Lagoas 1984/85	Primeiro	0,00	0,00	127,9	119,9	34,2	24,2	2,6			
	Segundo	119.6	10,4	134,3	150,2	0,6	305,4	17,1			
	Terceiro	15,2	97,3	79,5	377,0	134.8	98,5	0,00			
	Total	134,8	107,7	341,7	646,2	169,6	428,1	19,7			
	Primeiro	0.00	0,00	93,7	119,9	30.7	87,1	4,7			
Lavras	Segundo	38,8	130,2	99,6	69,3	20.0	109,8	3,6			
1984/85	Terceiro	28,0	46,8	74,6	260,4	109.9	28.2	0,00			
	Total	66,5	117,0	267.9	449.6	160,6	225,1	8,3			

TABELA 2. Resultados médios das características de milho e feijão obtidos no experimento envolvendo diferentes cultivares de milho e densidades de plantio em monocultivo e consórcio. Sete Lagoas, MG. Ano agrícola 1983/84.

	População (mil plantas/ha)	Milho				Feijão		
Cultivares		Índice de espiga		Produtividade de grãos (kg/ha)		Produtividade de grãos (kg/ha)	Produção ² equivalente	
		M ¹	С	M	С	С	M	c
Piranão VD 1	20	1,80	1,76	5.695	4.640	962	5.695	8.971
x -	40	1,30	1,26	6.339	5.679	587	6.339	8.321
Piranão VD 2	60	0,96	0,96	5.691	6.155	353	5.691	7.746
	$\overline{\mathbf{x}}$	1,35	1,32	5.908	5.491	634	5.908	5.355
	20	1,40	1,26	5.016	4.404	1.096	5.016	9,344
Piranão Prolífico	40	1,06	1,06	5.942	5.438	687	5.942	8.532
	60	0,93	0,90	7.269	5.943	569	7.269	8.506
	\overline{x}	1,13	1,07	6.076	5.263	784	6.076	8.749
	20	1,93	1,66	5.021	5.671	965	5.021	9.018
BR 105 Prolífico	40	1,26	1,30	5.681	5.602	550	5.681	8.077
	60	1,20	1,06	6.426	5.858	498	6.426	8.101
	ヌ⁻	1,46	1,34	5.709	5.377	671	5.709	8.399
	20	1,36	1,36	4.525	4.744	902	4.524	8.803
BR 126	40	0,96	1,10	5.904	5.571	636	5.984	8.436
	60	0,96	0,93	6.333	5.618	422	6.333	7.519
	~ X	1,09	1,13	5.614	5.311	653	5.614	8.253
	20	1,43	1,46	3.962	4.584	844	3.962	8.391
Hmd 7974	40	1,06	1,10	5.541	5.280	552	5.541	7.767
	60	0,96	0,90	5.492	5.101	374	5.492	6.786
	≖	1,15	1,15	4.999	4.970	590	4.999	7.648
. M	édia das populaçõe	ıs						
	20	1,58	1,50	4.844	4.611	954	4.844	8.906
	40	1,12	1,16	5.898	5.514	602	5.897	8.226
-	60	1,00	0.95	6.242	5.735	443	6.242	7.732
	X geral	1,23	1.20	5.661	5.286	667	5.661	8.288
	CVa (%)	* .	,78		.76	17.57		.70
	CVb (%)	15,60			,66	21,41	12,53	

M e C: referem-se ao monocultivo e consórcio, respectivamente.

de espiga, notou-se que a prolificidade foi maior nas menores populações. Comparando estas duas populações nas mesmas condições já mencionadas, o índice de espiga na população de 20 mil plantas/ha (1,36) foi 30,8% superior ao obtido com 40 mil plantas/ha (10,4). Estes resultados mostram que em termos de produção de grãos, o maior número

de espigas por plantas atenuou o menor efeito do número de plantas na população de 20 mil.

Não houve interação significativa entre cultivares e população de plantas em nenhum dos experimentos, mostrando que o desempenho das cultivares quanto a produção de grãos e índice de espiga, independentemente da população utilizada, foi se-

Pesq. agropec. bras., Brasília, 22(2):203-211, fev. 1987.

Produção equivalente de milho obtida pela expressão PE = Produtividade de grãos de milho + 4,5 x produtividade de grãos de feijão.

melhante. Era esperado que os materiais que estão sendo selecionados para maior prolificidade (Piranão VD-2 e BR 105 Prolífico) apresentassem maior incremento na prolificidade nas menores populações, que as cultivares testemunhas (BR 126 e Hmd 7974). Embora em alguns casos ocorresse esta tendência, a diferença não foi significativa. Prior & Russel (1976) também não encontraram interação significativa entre população x híbrido,

quando os híbridos utilizados diferiram em prolificidade. Por outro lado, Prior & Russel (1968) mostraram que os híbridos prolíficos apresentavam melhor desempenho nas maiores populações de plantas que os não prolíficos.

Na análise de variância da produção equivalente, isto é, da produtividade combinada de grãos, de milho e feijão, ocorreu diferença significativa entre as cultivares apenas no experimento de La-

TABELA 3. Resultados médios das características de milho e feijão obtidos no experimento envolvendo diferentes cultivares de milho e densidade de plantio, em monocultivo e consórcio. Lavras, MG. Ano agrícola 1984/85.

		Milho				Feijão			
Cultivares	População (mil plantas/ha)	Indice de espiga		Produtividade de grãos (kg/ha)		Produtividade de grãos (kg/ha)	Produção ² equivalente		
		M ¹	С	м	. C	С	М	С	
· · · · · · · · · · · · · · · · · · ·	20	1,18	1,26	2.443	2.880	446	2,443	4.887	
Piranão VD 2 🕠	40	1,00	0,96	3.469	3.031	305	3.469	4.404	
	60	1,02	0,97	3.062	3.514	267	3.062	4.715	
	$\mathbf{\bar{x}}$	1,06	1,06	2.991	3.142	339	2.991	4.911	
	20	1,38	1,56	2.395	2.193	427	2,395	4,115	
BR 200	40	1,18	1,11	3.455	2.750	351	3.445	4.329	
	60	1,19	1,06	4.202	3.121	331	4.202	4.610	
	\overline{x}	1,25	1,25	3.347	2.688	369	3.347	4.351	
	20	1,24	1,02	2.132	954	420	2.132	2.844	
BR 105 Prolífico -	40	1,05	1,05	2.451	2.387	316	2.451	3.809	
•	60	0,99	88,0	2.928	2.657	274	2.928	3.890	
	\overline{x}	1,09	0,98	2.503	1.999	336	2.503	3.514	
' 2	20	1,15	1,07	2.325	1.621	494	2.325	3.844	
BR 126	40	0,97	0,90	2.182	2.111	500	3.182	4.361	
• •	60	0,91	0,90	3.228	2.830	386	3.229	4.567	
	₹	1,01	0,95	2.911	2.187	460	2.911	4.257	
	20	1,21	1,03	2.832	2.066	530	2.832	4.451	
Hmd 7974	40	0,98	0,92	3.620	2.684	450	3.620	4.709	
	60	0,96	0,93	3.046	3.197	337	3.046	4.722	
	$\overline{\mathbf{x}}$	1,05	0,96	3.166	2.649	439	3.166	4.627	
	lédia das populaçõe	s			· • .				
	20	1,23	1,18	2.425	1.943	463	2.425	4.028	
	40	1,03	0.98	3.233	2.593	384	3.233	4.322	
	60	1,01	0,94	3.293	3.064	319	3.293	4.501	
	X geral	1,09	1,03	2.984	2.533	389	2.984	4.284	
	CVa (%)		5,22		.29	18,24		7,63	
	CVb (%)	10,76		17,29		22,50		14,70	

¹ M e C: referem-se ao monocultivo e consórcio, respectivamente.

Produção equivalente de milho obtida pela expressão PE = Produtividade de grãos de milho + 4,5 x produtividade de grãos de feijão.

TABELA 4. Resultados médios das características de milho e feijão obtidos no experimento envolvendo diferentes cultivares de milho e densidade de plantio em monocultivo e consórcio. Sete Lagoas, MG. Ano agrícola 1984/85.

	• .	Milho				Feijão		
Cultivares	População (mil plantas/ha)	Índice de espiga		Produtividade de grãos (kg/ha)		Produtividade de grãos (kg/ha)	Produção ² equivalente	
		M¹	С	М	. с	С	м	C .
	20	1,45	1,36	4.107	3.690	227	4.107	4.713
Piranão VD 2	40	0,99	1,05	4.630	4.483	142	4.638	5.123
	. 60	0,98	0,83	5.594	4.038	112	5.594	4.544
•	x	1,14	1,08	4.780	4.070	160	4.780	4.793
	20	1,44	1,41	2.790	2.826	229	2.790	3.857
BR 200	40	1,06	1,08	3.348	3.354	213	3.358	4.316
	60	0,82	1,10	2.825	2.877	140	2.825	3.507
	X	1,10	1,19	2.991	3.019	194	2.991	3.893
	20	1,68	1,32	3.645	3.428	214	3.645	4.391
BR 105 Prolífico	40	1,01	1,08	3.152	3.042	140	3.152	3.672
	60	0,99	0,93	3.801	3.605	131	3.801	4.195
	x	1,22	1,11	3.432	3.350	161	3.532	4.086
	20	1,10	1,11	3.248	2.611	260	3.248	3.781
BR 126	40	0,86	0,85	2.825	3.269	158	2.825	3.982
	60	0,81	0,91	3.598	3.211	97	3.598	3.651
	\overline{x}	0,95	0,95	3.224	3.030	172	3.224	3.805
	20	1,44	0,99	4.227	2.735	297	4.227	4.075
Hmd 7974	40	0,88	1,02	3.987	4.945	154	3.987	5.640
	60	0,87	0,67	4.956	3.575	95	4.956	4.006
	√ 🐰	1,06	0,89	4.390	3.752	182	4.390	4.574
	Média das populaçõe	s						
	20	1,43	1,23	3.603	3.058	245	3.603	4.164
	40	0,96	1,01	3.592	3.819	161	3.592	4.546
	60	0,89	0,88	4.155	3.461	115	4.155	3.981
	X geral	1,09	1,04	3.783	3.446	174	3.783	4.230
	CVa (%)	18,40		44,04		19,16	36,06	
	CVb (%)		13,70		,20	26,83	17,63	

¹ M e C: referem-se ao monocultivo e consórcio, respectivamente.

vras. Neste local, a cultivar com maior produção equivalente foi a Piranão VD-2, porém diferiu significativamente apenas com relação a cultivar BR 105 Prolífico.

A produção equivalente no sistema consorciado superou a obtida em monocultivo em 44%, 46% e 12%, para os experimentos de Lavras, Sete Lagoas de 1983/84 e 1984/85, respectivamente (Tabelas 2, 3 e 4). Estes resultados mostram que o consórcio foi uma prática vantajosa, aspecto esse evidenciado em inúmeros trabalhos. (Andrade et al. 1974, Wijesinha et al. 1982, Cruz et al. 1984).

Ocorreu efeito significativo da produção equivalente, para a interação populações x sistema de cultivo, nos experimentos de Sete Lagoas. Embora no experimento de Lavras esta interação não fosse

Pesq. agropec. bras., Brasília, 22(2):203-211, fev. 1987.

Produção equivalente de milho obtida pela expressão PE = Produtividade de grãos de milho + 4,5 x produtividade de grãos de feijão.

significativa ocorreu a mesma tendência dos demais experimentos (Tabelas 2, 3 e 4). Os resultados apresentados mostram que não houve efeito significativo de populações de plantas no sistema consorciado, em virtude da ocorrência de maior produtividade do feijão nas menores populações que compensou a redução na produtividade de grãos do milho. Quando se avaliou a produção equivalente considerando-se a produção média de todos os tratamentos, nos três locais em consórcio, observou-se que a produção equivalente na população de 20 mil plantas/ha (5.699 kg/ha), foi praticamente a mesma da obtida em 40 mil plantas/ha (5.698 kg/ha). Estes resultados servem para explicar porque os agricultores normalmente adotam menor população de milho quando realizam o cultivo consorciado, como foi verificado por Vieira et al. (1975), na Zona da Mata de Minas Gerais. Utilizando-se menores populações de milho, os agricultores obtêm maiores produtividades degrãos de feijão, o que compensa a redução na produtividade de grãos de milho.

Como já foi mencionado, com a utilização de cultivares selecionadas para maior prolificidade, esperava-se que elas sofressem menor efeito da diminuição da população de plantas, compensando a menor população através de maior produção de espiga e, consequentemente, maior produção de grãos. Tal efeito, no entanto, não foi verificado, uma vez que a interação cultivar x população não foi significativa. Porém, os resultados obtidos com a produção de grãos de feijão, nas menores populações de plantas mostraram em mais esta oportunidade que a hipótese formulada neste trabalho não deve ser rejeitada. Novas cultivares prolíficas devem ser avaliadas em consórcio. Além disso, seria importante que os melhoristas procurassem conduzir a seleção de progênies das variedades que estão sendo melhoradas, na população de plantas recomendadas para o monocultivo e também em população inferior para identificar aquelas progênies que sofressem menor influência na redução do número de plantas.

CONCLUSÕES

1. A produtividade do feijão consorciado respondeu linearmente às alterações na população de plantas de milho. Constatou-se que para se obter maiores produtividades dos feijoeiros consorciados deverá ser utilizada menor população de plantas de gramínea.

- 2. A redução na população de plantas de milho contribuiu para diminuir sua produtividade de grão. Esta diminuição só não foi maior em virtude do aumento no número de espigas por planta; efeito esse observado nas menores populações de plantas.
- 3. As cultivares apresentaram praticamente o mesmo desempenho e as interações cultivares x sistema de cultivo e cultivares x populações de plantas, não foram significativas para as diferentes características avaliadas.
- 4. Considerando-se a produção equivalente, a redução na produção de grãos de milho nas menores populações dessa cultura foram compensadas pelo incremento na produção de feijão nessa situação.

REFERÊNCIAS

- AIDAR, H.; VIEIRA, C.; OLIVEIRA, L.M. de; VIEIRA, M. Cultura associada de feijão e milho. II. Efeitos de populações de plantio simultâneo de ambas as culturas. R. Ceres, 26(143):102-11, 1979.
- ANDRADE, M.A. de; RAMALHO, M.A.P.; ANDRADE, M.I.B. de. Consorciação do feijoeiro (Phaseolus vulgaris L.) com cultivares de milho (Zea mays L.) de porte diferente. Agros, Lavras, 4(2):23-30, 1974.
- ARAÚJO, A.G. de. Sistemas de culturas milho-feijão; efeitos de cultivares e populações de plantas de milho em três sistemas de consorciação. Viçosa, UFV, 1978. 78p. Tese Mestrado.
- CHAGAS, J.M.; VIEIRA, C.; RAMALHO, M.A.P.; PE-REIRA FILHO, I.A. Efeitos do intervalo entre fileiras de milho sobre o consórcio com a cultura do feijão. Pesq. agropec. bras., 18(8):879-85, 1983.
- COUTO, W.S. Efeito de sistemas culturais milho-feijão no município de Viçosa, Minas Gerais. Viçosa, UFV, 1976. 32p. Tese Mestrado.
- CRUZ, J.C.; CORREA, L.A.; RAMALHO, M.A.P.; SIL-VA, A.F. da; OLIVEIRA, A.C. de. Avaliação de cultivares de milho associado com feijão. Pesq. agropec. bras., 19(2):163-8, 1984.
- FARDIM, F. Influência de sistemas de consorciação na produtividade e outras características agronômicas do milho e do feijão. Lavras, ESAL, 1977. 61p. Tese Mestrado.
- FRANCIS, C.A. Development of plant genotypes for multiple cropping systems. In: FREY, K.J. Plant breeding II. Ames, Iowa State University, 1981. p.179-231.