PhenoGlad model and the zoning of gladiolus planting dates in the State of Santa Catarina, Brazil

Melina Inês Bonatto, Leosane Cristina Bosco, Cristina Pandolfo, Luciane Teixeira Stanck, Alexandra Goede de Souza, Otavio Bagiotto Rossato, Nereu Augusto Streck


The objective of this study was to evaluate the PhenoGlad model for its use in SC climatic conditions and to propose the zoning of the best planting dates of gladiolus, aiming at marketing for Mother's Day, Valentine's Day, and All Souls' Day in SC, based on the PhenoGlad model and tools of Geographic Information Systems. Initially, we evaluated PhenoGlad model performance to simulate plant development with the phenological data collected in the field and the statistics used were: Root Mean Square Error (RMSE), BIAS Index (BIAS), Pearson's Correlation Coefficient (r), and Index of Agreement (dw). Afterwards, the best planting dates were simulated with the PhenoGlad model. Statistics showed that the model satisfactorily simulated the harvest time with an average RMSE of 3.5 days, BIAS < 0, dw and r > 0.99. Cultivation aiming at harvesting for Mother's Day, in SC, can be carried out in any region without restrictions. For municipalities located in the Midwest, Santa Catarina Plateau, and Santa Catarina North Plateau there is a planting restriction for the Valentine's Day. For All Souls' Day, late cycle cultivars have greater cultivation restrictions than early cycle cultivars. These restrictions are due to the low temperatures that can jeopardize the plant development at the end or beginning of the cycle.


Gladiolus x grandiflorus Hort.; production planning; phenology

Texto completo:

PDF (English)


ALVARES, C. A.; STAPE, J. L.; SENTELHAS, P. C.; GONÇALVEZ, J. L. D. M.; SPAROVEK, G. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, v.22, p.711-728, 2013. DOI: 10.1127/0941-2948/2013/0507.

ANDARZIAN, B.; HOOGENBOOM, G.; BANNAYAN, M. S.; ANDARZIAN, B. Determining optimun sowing date of wheat using CSM-CERES-Wheat model. Journal of the Saudi Society of Agricultural Sciences, v.14, p.189-190, 2015. DOI: 10.1016/j.jssas.2014.04.004.

BECKER, D.; PAULUS, D.; BOSCO, L. C.; HOJO, E. T. D.; SATO, A. J.; YAMAMOTO, L. Y.; RITTER, G.; NAVA, G. A. Validation of the PhenoGlad model and determination of planting dates of the gladiolo for the state of Paraná. Semina: Ciências Agrárias, [S. l.], v.44, n.1, p.39-60, 2023. DOI: 10.5433/1679-0359.2022v44n1p39

BONATTO, M. I.; BOSCO, L. C.; PANDOLFO, C.; DA SILVA RICCE, W.; STANCK, L. T.; DE SOUZA, A. G.; ROSSATO, O. B.; STRECK, N. A. Agricultural climate risk zoning for gladiolus in Santa Catarina. Revista Brasileira de Climatologia, v.28, p.619-633, 2021. DOI: 10.5380/rbclima.v28i0.73149

DE LEITE, H. G.; ANDRADE, V. C. L. de. Um método para condução de inventários florestais sem o uso de equações volumétricas. Revista Árvore, v.26, p.321-328, 2002. DOI: 10.1590/S0100-67622002000300007.

DIRKS, K. N.; HAY, J. E.; STOW, C. D.; HARRIS, D. High-resolution studies of rainfall on Norfolk Island Part II: Interpolation of rainfall data. Journal of Hydrology, v.208, p.187-193, 1998. DOI: 10.1016/S0022-1694(98)00155-3

HERNANDEZ-OCHOA, I. M.; ASSENG, S.; KASSIE, B. T.; XIONG, W.; ROBERTSON, R.; PEQUENO, D. N. L.; SONDER, K.; REYNOLDS, M.; BABAR, M. A.; MILAN, A. M.; HOOGENBOOM, G. Climate change impact on Mexico wheat production. Agricultural and Forest Meteorology, v.263, p.373-387, 2018. DOI: 10.1016/j.agrformet.2018.09.008

IBGE. 2018. Portal de mapas do IBGE. Available at: <>. Accessed on: Oct. 01 2022.

JANSSEN, P. H. M.; HEUBERGER, P.S.C. Calibration of process-oriented models. Ecological Modelling, v.83, p.55-56, 1995. DOI: 10.1016/0304-3800(95)00084-9

LENG, G. Recent changes in county-level corn yield variability in the United States from observations and crop models. Science of the Total Environment. v.607, p.683-690, 2017. DOI: 10.1016/j.scitotenv.2017.07.017

LIM, T. K. Gladiolus grandiflorus. In: Lim, T. K. Edible Medicinal and Non Medicinal Plants. New York: Springer, 2014. p.144-150. DOI: 10.1007/978-94-017-8748-2_6

MORELL, F. J.; HAISHUN, S. Y.; CASSMAN, K. G.; WART, J. V.; ELMORE, R. W.; LICHT, M.; COULTER, J. A.; CIAMPITTI, I. A.; PITTELKOW, C. M.; BROUDER, S. M.; THOMISON, P.; LAUER, J.; GRAHAM, C.; MASSEY, R.; GRASSINI, P. Can crop simulation models be used to predict local to regional maize yields and total production in the U.S. Corn Belt? Field Crops Research, v.192, p.1-12, 2016. DOI: 10.1016/j.fcr.2016.04.004

OJEDA, J. J.; VOLENEC, J. J.; BROUDER, S. M.; CAVIGLIA, O. O.; AGNUSDEI, M. C. Modelling stover and grain yields, and subsurface artificial drainagefrom long-term corn rotations using APSIM. Agricultural Water Management, v.195, p.154-171, 2018. DOI: 10.1016/j.agwat.2017.10.010

PANDOLFO, C.; BRAGA, H. J.; SILVA JÚNIOR, V. P.; MASSIGNAN, A. M.; PEREIRA, E. S.; THOMÉ, V. M. R.; VALCI, F. V. 2022. Atlas climatológico do Estado de Santa Catarina. Available at: . Accessed on: Oct. 15 2022.

QGIS Development Team. 2019. QGIS Geographic Information System. Available at: . Accessed on: Oct. 15 2022.

RAYMUNDO, R.; ASSENG, S.; ROBERTSON, R.; PETSAKOS, A.; HOOGENBOOM, G.; QUIROZ, R.; HAREAU, G.; WOLF, J. Climate change impact on global potato production. European Journal of Agronomy, v.100, p.87-98, 2018. DOI: 10.1016/j.eja.2017.11.008

R DEVELOPMENT CORE TEAM. 2013. R: A Language and Enviroment for Statistical Computing. Available at: . Accessed on: Jun. 15 2022.

ROSA, H. T.; WALTER, L. C.; STRECK, N. A.; CARLI, C. D.; RIBAS, G. G.; MARCHESAN, E. Simulação do crescimento e produtividade de arroz no Rio Grande do Sul pelo modelo SimulArroz. Revista Brasileira de Engenharia Agrícola e Ambiental, v.19, p.1159–1165, 2015. DOI: 10.1590/1807-1929/agriambi.v21n4p221-226

SCHWAB, N. T.; STRECK, N. A.; BECKER, C. C.; LANGNER, J. A.; UHLMANN, L. O.; RIBEIRO, B. S. M. R. A phenological scale for the development of Gladiolus. Annals of Applied Biology, v.166, p.496–507, 2015. DOI: 10.1111/aab.12198

SCHWAB, N. T.; STRECK, N. A.; UHLMANN, L. O.; BECKER, C. C.; RIBEIRO, B. S. M. R.; LANGNER, J. A.; TOMIOZZO, R. Duration of cycle and injuries due to heat and chilling in gladiolus as a function of planting dates. Revista Brasileira de Horticultura Ornamental, v.24, n.2, p.163-173, 2018. DOI: 10.14295/oh.v24i2.1174

SCHWAB, N. T.; UHLMANN, L. O.; BECKER, C. C.; TOMIOZZO, R.; STRECK, N. A.; BOSCO, L. C.; BONATTO, M. I.; STANCK, L. T. Gladíolo: Fenologia e Manejo Para Produção de Hastes e Bulbos. 1. ed. Santa Maria: [s.n.], 2019. 136p.

SETIYONO, T. D.; CASSMAN, K. G; SPECHT, J. E.; DOBERMANN, A.; WEISS, A.; YANG, H.; CONLEY, S. P.; ROBINSON, A. P.; PEDERSON, P.; DE BRUIN, J. L. Simulation of soybean growth and yield in near-optimal growth conditions. Field Crops Research, v.119, p.161-174, 2010. DOI: 10.1016/j.fcr.2010.07.007

SHILLO, R.; HALEVY, A. H. The effects of various environmental factors on flowering of gladiolus. III. Temperature and moisture. Scientia Horticulturae, v.4, p.147-155, 1976. DOI: 10.1016/S03044238(76)800064

SOUZA, A.G. de; JUNG, E. A.; BENEDICTO, V. P; BOSCO, L.C. Bioactive compounds in gladiolus flowers. Ornamental Horticulture, v.27, n.3, p.296–303, 2021. DOI: 10.1590/2447-536X.v27i3.2310

STRECK, N.A.; BELLÉ, R. A.; BACKES, F. A. A. L. B.; GABRIEL, L.F.; UHLMANN, L. O.; BECKER, C. C. Desenvolvimento vegetativo e reprodutivo em gladíolo. Ciência Rural, v.42, p.1968–1974, 2012. DOI: 10.1590/S0103-84782012001100010

SUDHAKAR, M.; KUMAR, S. R. Studies on the influence of planting season and weather parameters on growth parameters of two different varieties of G. grandiflorus L. The Asian Journal of Horticulture, v.10, p.36-40, 2015. DOI: 10.15740/HAS/TAJH/10.1/36-40

TOMIOZZO, R.; STRECK, N. A.; BECKER, C. C.; UHLMANN, L. O.; SCHWAB, N. T.; CERA, J. C.; PAULA, G. M. DE. Long-term changes in the optimum planting date of gladiolus in southern Brazil. Acta Scientiarum. Agronomy, v.43, n.1, p.e50939, 2021. DOI: 10.4025/actasciagron.v43i1.50939

TOMBOLATO, A. F. C.; UZZO, R. P.; JUNQUEIRA, A. H.; PEETZ, M. D. S.; STANCATO, G. C.; ALEXANDRE, M. A. V. Bulbosas ornamentais no Brasil. Revista Brasileira de Horticultura Ornamental, v.16, p.127-138, 2010. DOI: 10.14295/rbho.v16i2.553

UHLMANN, L. O.; STRECK, N. A.; BECKER, C. C.; SCHWAB, N. T.; BENEDETTI, R. P.; CHARÃO, A. S.; RIBEIRO, B. S. M. R.; SILVEIRA, W. B.; BACKES, F. A. A. L.; ALBERTO, C. M.; MUTTONI, M.; PAULA, G. M. D.; TOMIOZZO, R.; BOSCO, L. C.; BECKER, D. PhenoGlad: A model for simulating development in Gladiolus. European Journal of Agronomy, v.82, p.33–49, 2017. DOI: 10.1016/j.eja.2016.10.001

WREGE, M. S.; FRITZSONS, E.; SOARES, M. T. S.; PRELA-PÂNTANO, A.; STEINMETZ, S.; CARAMORI, P. H.; RADIN, B.; PANDOLFO, C. Risco de ocorrência de geada na Região Centro-Sul do Brasil. Revista Brasileira de Climatologia, v.22, p.524-553, 2018. DOI: 10.5380/abclima.v22i0.57306

WANG, E.; ENGEL, T. Simulation of phenological development of wheat crops. Agricultural systems, v.58, n.1, p.1-24, 1998. DOI: 10.1016/S0308-521X(98)00028-6

WILLMOTT, C. J. On the validation of models. Physical Geograph, v.2, p.184-194, 1981. DOI: 10.1080/02723646.1981.10642213

XAVIER, A. C., KING, C. W., SCANLON, B. R. Daily gridded meteorological variables in Brazil (1980–2013). International Journal of Climatology, v.36, p.2644-2659, 2016. DOI: 10.1002/joc.4518



  • Não há apontamentos.

Embrapa Trigo

Rodovia BR-285, km 294, Caixa Postal: 3081

CEP 99050-970 Passo Fundo/RS