Proteção para a cultura de milho contra a seca mediada por bactérias da Caatinga
Resumo
Palavras-chave
Texto completo:
PDFReferências
ABDELAAL, K.A.A.; ELAFRY, M.; ABDEL-LATIF, I.; ELSHAMY, R.; HASSAN, M.; HAFEZ, Y. Pivotal role of yeast and ascorbic acid in improvement the morpho-physiological characters of two wheat cultivars under water deficit stress in calcareous soil. Fresenius Environ. Bull, [S.L.], v. 10, n. 3, p. 398, 2021. DOI: 10.3390/horticulturae7110510
COUTINHO, B.G.; LICASTRO, D.; MENDONÇA-PREVIATO, L.; CÁMARA, M.; VENTURI, V. Plant-influenced gene expression in the rice endophyte Burkholderia kururiensis M130 Molec. Plant-Microbe Interact, [S.L.], v. 28, n. 1, p. 10-21, 2015. DOI: 10.1094/MPMI-07-14-0225-R
CURÁ, J.; FRANZ, D.; FILOSOFÍA, J.; BALESTRASSE, K.; BURGUEÑO, L. Inoculation with Azospirillum sp. and Herbaspirillum sp. Bacteria Increases the Tolerance of Maize to Drought Stress. Microorganisms, [S.L.], v. 5, n. 3, p. 41, 2017. DOI: 10.3390/microorganisms5030041
DE ANDRADE, M.A.F.; RAMOS-CAIRO, P.A.; SANTOS, J.L. Water relations and photosynthesis of young coffee plants under two water regimes and different n and k doses. Agrociencia, Texcoco, v. 49, n. 2, p. 153-161, 2015.
FAO. CLIMATE IS CHANGING. FOOD AND AGRICULTURE MUST TOO. [S.L]. 2016. Disponível em: . Acesso em: 17 set. 2021.
FERRARI, E.; PAZ, A.; SILVA, A.C. Déficit Hídrico no Metabolismo da Soja em Semeaduras Antecipadas no Mato Grosso. Nativa, [S.L.], v. 3, n. 1, p. 67-77, 2015. DOI: 10.31413/nativa.v3i1.1855
FRESNO, D. H.; MUNNÉ-BOSCH, S. Differential Tissue-Specific Jasmonic Acid, Salicylic Acid, and Abscisic Acid Dynamics in Sweet Cherry Development and Their Implications in Fruit-Microbe Interactions. Frontiers In Plant Science, [S.L.], v. 12, p. 19-33, 2021. DOI: 10.3389/fpls.2021.640601
GALVÃO, J. C. C.; MIRANDA, G. V.; TROGELLO, E.; FRITSCHE-NETO, R. Sete décadas de evolução do sistema produtivo da cultura do milho. Revista Ceres, [S.L.], v. 61, p. 819-828, 2014. DOI: 10.1590/0034-737x201461000007
GLICK, B. R. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological research, v. 169, p. 30-39, 2014. DOI: 10.1016/j.micres.2013.09.009
ISLAM, M. T.; RAHMAN, M.; PANDEY, P.; JHA, C. K.; Aeron, A. (Eds.). Bacilli and agrobiotechnology: phytostimulation and biocontrol. [S.L]. 2016. 416 p. DOI: 10.1007/978-3-030-15175-1
JOCHUM, M. D.; MCWILLIAMS, K. L.; BORREGO, E. J.; KOLOMIETS, M. V.; NIU, GENHUA; PIERSON, E. A.; JO, Young-Ki. Bioprospecting Plant Growth-Promoting Rhizobacteria That Mitigate Drought Stress in Grasses. Frontiers In Microbiology, [S.L.], v. 10, p. 327-345, 2019. DOI: 10.3389/fmicb.2019.02106
KASIM, W.A.; OSMAN, M.E.; OMAR, M.N.; ABD EL-DAIM, I.A.; BEJAI, J.M.S. Control of drought stress in wheat using plant growth promoting bacteria. J. Plant Growth Regulation., v. 32, p. 122-130, 2013. DOI: 10.1007/s00344-012-9283-7
KAVAMURA, V. N.; SANTOS, S. N.; SILVA, J. L. da; PARMA, M. M.; ÁVILA, L. A.; VISCONTI, A.; ZUCCHI, T. D.; TAKETANI, R. G.; ANDREOTE, F. D.; MELO, I. S. de. Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiological Research, [S.L.], v. 168, p. 183-191, 2013. DOI: 10.1016/j.micres.2012.12.002
LYNCH, J. P. Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture. Plant, Cell & Environment, [S.L.], v. 38, n. 9, p. 1775-1784, 2014. DOI: 10.1111/pce.12451
MELO, A. V. de; SANTOS, V. M. de; VARANDA, M. A. F.; CARDOSO, D. P.; DIAS, M. A. R.. DESEMPENHO AGRONÔMICO DE GENÓTIPOS DE MILHO SUBMETIDOS AO ESTRESSE HÍDRICO NO SUL DO ESTADO DO TOCANTINS. Revista Brasileira de Milho e Sorgo, Tocantins, v. 17, n. 2, p. 177-189, 2018. DOI: 10.18512/1980-6477/rbms.v17n2p177-189
NAVEED, M.; HUSSAIN, M. B.; ZAHIR, Z. A.; MITTER, B.; SESSITSCH, A. Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regulation, [S.L.], v. 73, n. 2, p. 121-131, 2013. DOI: 10.1007/s10725-013-9874-8
NIU, X.; SONG, L.; XIAO, Y.; GE, W. (2018). Drought-Tolerant Plant Growth-Promoting Rhizobacteria Associated with Foxtail Millet in a Semi-arid Agroecosystem and Their Potential in Alleviating Drought Stress. Frontiers in Microbiology, [S.L.], v. 8, p. 25-37, 2018. DOI: 10.3389/fmicb.2017.02580
PEREIRA, C. S.; ZANETTI, V. H.; WIEST, G.; SCHOFFEN, M. E.; FIORINI, I. V. A. Desempenho produtivo de híbridos de milho na segunda safra no norte de Mato Grosso. Tecno-Lógica, [S.L.], v. 24, n. 2, p. 160-165, 2020. DOI: 10.17058/tecnolog.v24i2.14713
PINHEIRO, C.; CHAVES, M. M. Photosynthesis and drought: can we make metabolic connections from available data?. Journal Of Experimental Botany, [S.L.], v. 62, n. 3, p. 869-882, 2010. DOI: 10.1093/jxb/erq340
RAMAKRISHNA, W.; YADAV, R.; LI, K. (2019). Plant growth promoting bacteria in agriculture: Two sides of a coin. Applied Soil Ecology, [S.L.], v. 138, p. 10-18, 2019. DOI: 0.1016/j.apsoil.2019.02.019
RAMAMOORTHY, P.; LAKSHMANAN, K.; UPADHYAYA, H. D.; VADEZ, V.; VARSHNEY, R. K. Shoot traits and their relevance in terminal drought tolerance of chickpea (Cicer arietinum L.). Field Crops Research, [S.L.], v. 197, p. 10-27, 2016. DOI: 10.1016/j.fcr.2016.07.016
REDDY, C. A.; SARAVANAN, R. S. Polymicrobial Multi-functional Approach for Enhancement of Crop Productivity. Advances In Applied Microbiology, [S.L.], p. 53-113, 2013. DOI: 10.1016/B978-0-12-407679-2.00003-X
SELIM, S.; HASSAN, Y. M.; SALEH, A. M.; HABEEB, T. H.; ABDELGAWAD, H. Actinobacterium isolated from a semi-arid environment improves the drought tolerance in maize (Zea mays L.). Plant Physiology And Biochemistry, [S.L.], v. 142, p. 15-21, 2019. DOI: 10.1016/j.plaphy.2019.06.029
SHIRINBAYAN, S.; KHOSRAVI, H.; MALAKOUTI, M. J. Alleviation of drought stress in maize (Zea mays) by inoculation with Azotobacter strains isolated from semi-arid regions. Applied Soil Ecology, [S.L.], v. 133, p. 138-145, 2019. DOI: 10.1016/j.apsoil.2018.09.015
TASHAYO, B.; HONARBAKHSH, A.; AKBARI, M.; EFTEKHARI, M. Land suitability assessment for maize farming using a GIS-AHP method for a semi- arid region, Iran. Journal Of The Saudi Society Of Agricultural Sciences, [S.L.], v. 19, n. 5, p. 332-338, 2020. DOI: 10.1016/j.jssas.2020.03.003
USDA - United States Department of Agriculture. WORLD AGRICULTURAL PRODUCTION OFFICE OF GLOBAL ANALYSIS, INTERNATIONAL PRODUCTION ASSESSMENT DIVISION(IPAD), Washington, DC.2019. Disponível em: . Acesso em 17 set. 2021.
WASAYA, A.; ZHANG, X.; FANG, Q.; YAN, Z. Root Phenotyping for Drought Tolerance: a review. Agronomy, [S.L.], v. 8, n. 11, p. 241, 2018. DOI: 10.3390/agronomy8110241
World Bank. WORLD POPULATION PROSPECTS 2019: HIGHLIGHTS. 2019. Disponível em: . Acesso em: 18 set. 2021.
DOI: http://dx.doi.org/10.31062/agrom.v30.e026986
Apontamentos
- Não há apontamentos.
Embrapa Trigo
Rodovia BR-285, km 294, Caixa Postal: 3081
CEP 99050-970 Passo Fundo/RS