Prospecting brown rust of sugarcane in São Paulo-Brazil under climate change scenarios

Emilia Hamada, Francislene Angelotti, Renata Ribeiro do Valle Gonçalves, Alejandro Mario Rago


Climate change can cause significant shifts in the occurrence and severity of agricultural diseases, altering the distribution of phytosanitary problems with severe economic, social, and environmental consequences. Despite their importance, these new geographic and temporal distributions of plant diseases still demand scrutiny. In the present study, we prospect the geographic distribution of sugarcane brown rust (Puccinia melanocephala) considering average temperature and relative humidity in the main producing region of the state of São Paulo. The geographic database was structured using GIS with projections of future climate change provided by IPCC. Mathematical logic equations were defined and applied to data of average temperature and relative humidity, resulting in monthly maps of climate favorability for the occurrence of the disease. Prospective maps for three future periods (2011-2040, 2041-2070, and 2071-2100) and two greenhouse gas emission scenarios were compared to the reference period (1961-1990). The analysis considered months from December to May. Our study shows a tendency of decrease in the favorability for the disease in a longer term (2071-2100), more noticeable in the scenario A2 than in B1. These results suggest; however, that this disease demands attention in the management of the producing region for future climate scenarios.


Saccharum officinarum L.; Puccinia melanocephala; geoprocessing; plant disease; climate

Texto completo:

PDF (English)


ANGELOTTI, F.; HAMADA, E.; MAGALHÃES, E. E.; GHINI, R.; GARRIDO, L. R.; PEDRO JÚNIOR, M. J. Climate change and the occurrence of downy mildew in Brazilian grapevines. Pesquisa Agropecuária Brasileira, v. 52, n. 6, p. 426-434, 2017. DOI: 10.1590/S0100-204X2017000600006.

AYAR, P. V.; VRAC, M.; MAILHOT, A. Ensemble bias correction of climate simulations: preserving internal variability. Scientific Reports, v. 11, n. 3098. 2021. DOI: 10.1038/s41598-021-82715-1

BARRERA, A.; HOY, J.; LI, B. Effects of temperature and moisture variables on brown rust epidemics in sugarcane. Journal of Phytopathology, v. 161, p. 98-106, 2013. DOI: 10.1111/jph.12035.

BARRERA, W.; HOY, J.; LI, B. Temperature and leaf wetness effects on infection of sugarcane by Puccinia melanocephala. Journal of Phytopathology, v. 160, p. 294-298, 2012. DOI: 10.1111/j.1439-0434.2012.01904.x.

BARRETO, F. Z.; BALSALOBRE, T. W. A.; CHAPOLA, R. G.; HOFFMANN, H. P.; CARNEIRO, M. S. Validação de marcadores moleculares associados à resistência à ferrugem marrom em cana-de-açúcar. Summa Phytopathologica, v. 43, n. 1, p. 36-40, 2017. DOI: 10.1590/0100-5405/168917.

BETTIOL, W.; HAMADA, E.; ANGELOTTI, F.; AUAD, A. M.; GHINI, R. Mudanças climáticas e problemas fitossanitários. In: BETTIOL, W.; HAMADA, E.; ANGELOTTI, F.; AUAD, A. M.; GHINI, R. (Ed.). Aquecimento global e problemas fitossanitários. Brasília, DF: Embrapa, 2017. Chap. 1, p. 11-16. Available at: Accessed Oct. 6, 2021.

CANA. In: AGRIANUAL 2020: anuário da agricultura brasileira. São Paulo: FNP, 2021. p. 180.

CHAKRABORTY, S.; MURRAY, G. M.; MAGAREY, P. A.; YONOW, T.; O’BRIEN, R. G.; CROFT, B. J.; BARBETTI, M. J.; SIVASITHAMPARAM, K.; OLD, K. M.; DUDZINSKI, M. J.; SUTHERS, R. W.; PENROSE, L. J., ARCHER, C.; EMMETT, R. W. Potential impact of climate change on plant diseases of economic significance to Australia. Australasian Plan Pathology, v. 27, p. 15-35, 1998. DOI: 10.1071/AP98001.

CHAULAGAIN, B.; SMALL, I. M.; SHINE JR., J. M.; RAID, R. N.; ROTT, P. Predictive modeling of brown rust of sugarcane based on temperature and relative humidity in Florida. Phytopathology, v. 111, p. 1401-1409, 2021. DOl. 2021 DOI: 10.1094/PHYTO-02-20-0060-R.

GHINI, R.; BETTIOL, W. HAMADA, E. Diseases in tropical plantation crops as affected by climate changes: current knowledge and perspectives. Plant Pathology, v. 60, p. 122–132, 2011a. DOI: 10.1111/j.1365-3059.2010.02403.x.

GHINI, R.; HAMADA, E.; ANGELOTTI, F.; COSTA, L. B.; BETTIOL, W. Research approaches, adaptation strategies, and knowledge gaps concerning the impacts of climate change on plant diseases. Tropical Plant Pathology, v. 37, n. 1, p. 5-24, 2012. DOI: 10.1590/S1982-56762012000100002.

GHINI, R.; HAMADA, E.; PEDRO JÚNIOR, M. J.; GONÇALVES, R. R. V. Incubation period of Hemileia vastatrix in coffee plants in Brazil simulated under climate change. Summa Phytopathologica, v. 37, n. 2, p. 85-93, 2011b. DOI: 10.1590/S0100-54052011000200001.

GHINI, R.; HAMADA, E.; PEDRO JÚNIOR, M. J.; MARENGO, J. A.; GONÇALVES, R. R. V. Risk analysis of climate change on coffee nematodes and leaf miner in Brazil. Pesquisa Agropecuária Brasileira, v. 43, n. 2. p. 187-194, 2008. DOI: 10.1590/S0100-204X2008000200005.

CLIMATE RESEARCH UNIT. Download 30-year means of the CRU data. Available at: Accessed Oct. 7, 2021.

CONAB. Portal de informações agropecuárias. Safras. Cana-de-açúcar – Série histórica. Available at: Accessed April 26, 2020.

HAMADA, E.; GHINI, R.; OLIVEIRA, B. S. Projeções de variáveis climáticas de interesse agrícola para o Brasil ao longo do século 21. In: BETTIOL, W.; HAMADA, E.; ANGELOTTI, F.; AUAD, A. M.; GHINI, R. (Ed.). Aquecimento global e problemas fitossanitários. Brasília, DF: Embrapa, 2017. p. 17-52.

HOY, J. W.; HOLLIER, C. A. Effect of brown rust on yield of sugarcane in Louisiana. Plant Disease, v. 93, p. 1171-1174, 2009. DOI: 10.1094/PDIS-93-11-1171.

IBGE. Instituto Brasileiro de Geografia e Estatística. Sistema IBGE de recuperação automática – SIDRA. Available at: Accessed Aug. 23, 2019.

IDO, O. T.; LIMA-NETO, V. C.; DAROS, E.; POSSAMAI, J. C.; ZAMBON, J. L. C.; OLIVEIRA, R. A. de. Incidência e severidade da ferrugem em clones de cana-de-açúcar no estado do Paraná. Pesquisa Agropecuária Tropical, v. 36, n. 3, p. 159–163, 2006. Available at: Accessed June 6, 2022.

IPCC. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007. 996 p. Available at: Accessed Oct. 7, 2021.

IPCC. Special report on emissions scenarios. A special report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2000. 599 p. Available at: Accessed Oct. 7, 2021.

IPCC. Summary for policymakers. In: Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2021. 41 p. (on press). Available at: Accessed Oct. 7, 2021.

JUROSZEK, P.; RACCA, P.; LINK, S.; FARHUMAND, J.; KLEINHENZ, B. Overview on the review articles published during the past 30 years relating to the potential climate change effects on plant pathogens and crop disease risks. Plant Pathology, v. 69, p. 179-193, 2020. DOI: 10.1111/ppa.13119.

MARAUM, D. Bias correcting climate change simulations – a critical review. Current Climate Change Reports, v. 2, p. 2011-220, 2016. DOI: 10.1007/s40641-016-0050-x.

MARIN, F. R.; JONES, J. W.; SINGELS, A.; ROYCE, F.; ASSAD, E. D.; PELLEGRINO, G. Q.; JUSTINO, F. Climate change impacts on sugarcane attainable yield in southern Brazil. Climatic Change, v. 117, p. 227-239, 2013. DOI: 10.1007/s10584-012-0561-y

MBOW, C.; ROSENZWEIG, C.; BARIONI, L. G.; BENTON, T. G.; HERRERO, M.; KRISHNAPILLAI, M.; LIWENGA, E.; PRADHAN, P.; RIVERA-FERRE, M. G.; SAPKOTA, T.; TUBIELLO, F. N.; XU, Y. Food Security. In: SHUKLA, P. R.; SKEA, J.; CALVO BUENDIA, E.; MASSON-DELMOTTE, V.; PÖTNER, H. -O.; ROBERTS, D. C.; ZHAI, P.; SLADE, R.; CONNORS, S.; van DIEMEN, R.; FERRAT, M.; HAUGHEY, E.; LUZ, S.; NEOGI, S.; PATHAK, M.; PETZOLD, J.; PORTUGAL PEREIRA, J.; VYAS, P.; HUNTLEY, E.; KISSICK, K.; BELKACEMI, M.; MALLEY, J. (Ed.). Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. 2019. Available at: Accessed Oct 7, 2021.

NEW, M.; HULME, M.; JONES, P. Representing twentieth-century space-time climate variability. Part I: development of a 1961-90 mean monthly terrestrial climatology. Journal of Climate, v. 12, p. 829-856, 1999. DOI: 10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2.

PORTER, J. R.; XIE, L.; CHALLINOR, A. J.; COCHRANE, K.; HOWDEN, S. M.; IQBAL, M. M.; LOBELL, D. B.; TRAVASSO, M. I. Food security and food production systems. In: FIELD, C. B.; BARROSs, V. R.; DOKKEN, D. J.; MACH, K. J.; MASTRANDREA, M. D.; BILIR, T. E.; CHATTERJEE, M.; EBI, K. L.; ESTRADA, Y. O.; GENOVA, R. C.; GIRMA, B.; KISSEL, E. S.; LEVY, A. N.; MacCRACKEN, S.; MASTRANDREA, P. R.; WHITE, L. L. (Ed.). Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2014. p. 485-533. Available at: Accessed Oct. 7, 2021.

RAGO, A.M.; PÉREZ GÓMEZ, S.G.; FONTANA, P.D. Roya marrón. In: INTA. Caña de azúcar: identificación y manejo de las enfermedades en Argentina. Programa Nacional de Cultivos Industriales – INTA, 2012. p. 9-13.

RAID, R. N.; COMSTOCK, J. C. Sugarcane rust disease. UF/IFAS Ext. SS-AGR-207. Gainesville: University of Florida, Institute of Food and Agricultural Sciences. 2006. Available at Accessed June 6, 2022.

ROTT, P.; ODERO, D. C.; BEUZELIN, J. M.; RAID, R. N.; VanWEELDEN, M.; SWANSON, S.; MOSSLER, M. Florida crop/pest profile: sugarcane. PI-171/PI207, rev 5/2018. EDIS, v. 2018, n. 3, 2018. DOI:10.32473/edis-pi207-2018. Available at: Accessed June 21, 2022.

SANGUINO, A. Impacto potencial das mudanças climáticas sobre as doenças da cana-de-açúcar. In: GHINI, R.; HAMADA, E. (Ed.). Mudanças climáticas: impactos sobre doenças de plantas no Brasil. Jaguariúna: Embrapa Meio Ambiente, 2008. p. 207-213.

SANJEL, S.; CHAULAGAIN, B.; SMALL, I. M.; COMTOCK, J. C.; HINCAPIE, M.; RAID, R.; ROTT, P. Comparison of progress of brown rust and orange rust and conditions conducive for sever epidemic development during the sugarcane crop season in Florida. Plant Disease, v. 103, p. 825-831, 2019. DOI: 10.1094/PDIS-05-18-0862-RE.

SANTOS, D. L.; SENTELHAS, P. C. Climate change scenarios and their impact on the water balance of sugarcane production areas in the State of São Paulo, Brazil. Revista Ambiente & Água, v. 7, n. 2, p. 7-17, 2012. DOI: 10.4136/ambi-agua.907.

SORDI, R. A; ARIZONO, H.; MATSUOKA, S. Indicadores de herdabilidade e avaliação da resistência de clones RB à ferrugem da cana-de-açúcar. Brasil Açucareiro, v. 106, n. 2, p. 18-23, 1988.

SOTOMAYOR, I. A.; PURDY, L. H.; TRESE, A. T. Infection of sugarcane leaves by Puccinia melanocephala. Phytopathology, v. 73, n. 5, p. 695-699, 1983. Available at: Accessed June 21, 2022.

TETENS, V. O. Uber einige meteorologische begriffe. Zeitschrift fur Geophysik, v. 6, p. 297-309, 1930.

TOKESHI, H.; RAGO, A. Doenças da cana-de-açúcar. In: AMORIM, L.; REZENDE, J. A. M.; BERGAMIN FILHO, A.; CAMARGO, L. E. A. (Ed.). Manual de fitopatologia: doenças das plantas cultivadas. Ouro Fino, MG: Agronômica Ceres, 2016. Chap. 23, p. 210-231.

ZHAO, D.; LI, Y. R. Climate change and sugarcane production: potential impact and mitigation strategies. International Journal of Agronomy, v. 2015, article ID 547386, 10 p., 2015. DOI: 10.1155/2015/547386.

ZULLO JR., J.; PEREIRA, V. R.; KOGA-VICENTE, A. Sugar-energy sector vulnerability under CMIP5 projections in the Brazilian central-southern macro-region. Climatic Change, v. 149, p. 489-502, 2018. DOI: 10.1007/s10584-018-2249-4.



  • Não há apontamentos.

Embrapa Trigo

Rodovia BR-285, km 294, Caixa Postal: 3081

CEP 99050-970 Passo Fundo/RS