Thermal environment in an agroforestry system of coffee and rubber tree in Southern Brazil

Juliandra Rodrigues Rosisca, Paulo Henrique Caramori, Heverly Morais, Marcelo Aguiar e Silva, George Mitsuo Yada Junior, Daniel Campos Caramori

Resumo


Climate change poses a significant risk to the production of Coffea arabica in currently cultivated areas, as the species has low tolerance to extreme temperature. Agroforestry systems are an alternative to contribute to the adaptation of this species and to continue the production in the regions where it is currently cultivated. This study assesses the thermal environment of an agroforestry system (AFS) composed of coffee and rubber trees (Hevea brasiliensis) planted in double rows with different spacings in Londrina, Parana state, Southern Brazil. Data of global solar radiation and temperature of air, leaves, and soil were continuously collected from 2015 to 2018. The findings reveal that the presence of rubber trees affected the microclimate by reducing extreme temperatures and decreasing mean temperatures. In the experimental conditions of limited size of the plots, leaf and soil temperatures represented more realistically the modifications in the microclimate induced by the rubber trees. The study concludes that this system can effectively contribute to the adaptation of coffee plantations in a warmer environment, in order to continue producing in traditional regions in Brazil.


Palavras-chave


temperature; microclimate; shading; global warming

Texto completo:

PDF (English)

Referências


ALEMU, M. M. Effect of Tree Shade on Coffee Crop Production. Journal of Sustainable Development, v. 8, n. 9; 2015. DOI:10.5539/jsd.v8n9p66.

ALVES, V.; GOULART, F. F.; JACOBSON, T. K. B.; MIRANDA FILHO, R. J.; RIBAS, C. E. D. C. Shade’s Benefit: Coffee Production under Shade and Full Sun. Journal of Agricultural Science, v. 8, n. 11, 2016. DOI:10.5539/jas.v8n11p11.

ASSAD, E. D.; PINTO, H. S.; ZULLO JUNIOR, J.; ÁVILA, A. M. H. Impacto das mudanças climáticas no zoneamento agroclimático do café no Brasil. Pesquisa Agropecuária Brasileira, Brasília, v. 39, n. 11, p. 1057-1064, 2004. DOI:10.1590/S0100-204X2004001100001.

BAGGIO, A. J.; CARAMORI, P. H.; ANDROCIOLI FILHO, A.; MONTOYA, L. Productivity of southern Brazilian coffee plantations shaded by different stockings of Grevillea robusta. Agroforestry Systems, Amsterdam, v. 37, n. 2, p. 111-120, 1997. DOI: 10.1023/A:1005814907546.

BUNN, C.; LÄDERACH, P.; OVALLE RIVERA, O.; KIRSCHKE, D. A bitter cup: climate change profile of global production of Arabica and Robusta coffee. Climatic Change, v. 129, n. 1, p. 89–101, 2015. DOI.org/10.1007/s10584-014-1306-x.

CAMARGO, A. P.; MARIN, F. R. M.; CAMARGO, M. B. P. Zoneamento climático da Heveicultura no Brasil. Campinas: Embrapa Monitoramento por Satélite, 2003. 19 p. (Embrapa Monitoramento por Satélite. Documentos, 24).

CAMARGO, M. B. P. The impact of climatic variability and climate change on arabic coffee crop in Brazil. Bragantia, Campinas, v. 69, n. 1, p. 239-247, 2010. DOI:10.1590/S0006-87052010000100030.

CARAMORI, P. H.; LEAL, A. C.; ANDROCIOLI FILHO, A. Coffee shade with Mimosa scabrella Benth. for frost protection in southern Brazil. Agroforestry Systems, Amsterdam, v. 33, n. 3, p. 205-214, 1996. DOI:10.1007/BF00055423.

CARAMORI, P. H.; KATHOUNIAN, C. A.; MORAIS, H.; LEAL, A. C.; HUGO, R. G.; ANDROCIOLI FILHO, A. Arborização de cafezais e aspectos climatológicos. In: MATSUMOTO, S. N. (coord). Arborização de Cafezais no Brasil. Vitória da Conquista, Bahia: Uesb, 2004. p. 21-41.

CARAMORI, P. H.; MORAIS, H.; NITSCHE, P. R.; OLIVEIRA, D.; RICCE, W. S.; ALVES, D. S.; COSTA, A. B. F.; BORROZZINO, E.; CALDANA, N. F. S.; YADA JUNIOR, G. M. Contribuições das pesquisas agrometeorológicas do IAPAR. Agrometeoros, Passo Fundo, v. 29, 2021. DOI: 10.31062/agrom.v29.e026924.

COLTRI, P. P.; PINTO, H. S.; GONÇALVES, R. R. V.; ZULLO JUNIOR, J.; DUBREUIL, V. Low levels of shade and climate change adaptation of Arabica coffee in southeastern Brazil. Heliyon, v. 5, n. 2, 2019. DOI: 10.1016/j.heliyon.2019.e01263.

DAMATTA. F. M. Ecophysiological constraints on the production of shaded and unshaded coffee: A review. Field Crops Research, Amsterdam, v. 86, n. 2, p. 99 – 114, 2004.

DAMATTA, F.M.; RAMALHO, J. D. C. Impacts of drought and temperature stress on coffee physiology and production: a review. Brazilian Journal of Plant Physiology, Londrina, v. 18, n. 1, p. 55-81, 2006. DOI: 10.1590/S1677-04202006000100006.

DAMATTA, F. M.; RONCHI, C. P.; MAESTRI, M.; BARROS, R. S. Ecophysiology of coffee growth and production. Brazilian Journal of Plant Physiology, Londrina, v. 19, n. 4, p. 485-510, 2007. DOI: 10.1590/S1677-04202007000400014.

EMBRAPA – Centro Nacional de Pesquisa de Solos. Sistema Brasileiro de Classificação de Solos. 3. ed. Rio de Janeiro, 2013.

FARFÁN-VALENCIA, F.; ARIAS, H. J. J.; RIAÑO H., N. M. Metodología para medir sombrío en sistemas agroforestales con café. Cenicafé, Chinchiná, Colombia, v. 54, n. 1, p.24-34, 2003.

GOMES, L. C.; BIANCHI, F. J. J. A.; CARDOSO, I. M.; FERNANDES, R. B. A.; FERNANDES FILHO, E. I.; SCHULTE, R. P. O. Agroforestry systems can mitigate the impacts of climate change on coffee production: A spatially explicit assessment in Brazil. Agriculture, Ecosystems & Environment, v. 294, 2020. DOI:10.1016/j.agee.2020.106858.

IDR-Paraná – Instituto de Desenvolvimento Rural do Paraná. Médias históricas em estações do IDR-Paraná. Available at: http://www.idrparana.pr.gov.br/system/files/publico/agrometeorologia/medias-historicas/Londrina.pdf. Accessed July 10, 2021.

IPCC - Intergovernmental Panel on Climate Change. Synthesis Report Summary for Policymakers. 2014. Available at: http://www.ipcc.ch/pdf/assessment-report/ar5/syr/AR5_SYR_FINAL_SPM.pdf. Accessed July 10, 2021.

IPCC - Intergovernmental Panel on Climate Change Summary for Policymakers. In: MASSON-DELMOTTE, V.; ZHAI, H. O.; PÖRTNER, D.; ROBERTS, J.; SKEA, P. R. SHUKLA, A.; PIRANI, W.; MOUFOUMA-OKIA, C.; PÉAN, R.; PIDCOCK, R.; CONNORS, S.; MATTHEWS, J. B. R.; CHEN, Y.; ZHOU, X.; GOMIS, M. I.; LONNOY, E.; MAYCOCK, T.; TIGNOR, M.; WATERFIELD, T. (Eds.). Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. World Meteorological Organization, Geneva, Switzerland, 2018. 32 p.

KUMAR, D.; TIESZEN, L. L. Photosynthesis in Coffea arabica L. Effects of light and temperature. Experimental Agriculture, v. 16, p.13-19, 1980.

LÄDERACH, P.; RAMIREZ–VILLEGAS, J.; NAVARRO-RACINES, C.; ZELAYA, C.; MARTINEZ–VALLE, A.; JARVIS, A. Climate change adaptation of coffee production in space and time. Climatic Change, v. 141, n. 1, p. 47-62, 2017. DOI:10.1007/s10584-016-1788-9.

LIN, B. B. Agroforestry management as an adaptive strategy against potential microclimate extremes in coffee agriculture. Agricultural and Forest Meteorology, v. 144, n. 1, p. 85-94, 2007. DOI:10.1016/j.agrformet.2006.12.009.

MARTINS, E.; APARECIDO, L. E. O.; SANTOS, L. P. S.; MENDONÇA, J. M. A.; SOUZA, P. S. Weather influence in yield and quality coffee produced in South Minas Gerais region. Coffee Science, Lavras, v. 10, n. 4, p. 499–506, 2015.

MEYLAN, L.; GARY, C.; ALLINNE, C.; ORTIZ, J.; JACKSON, L.; RAPIDEL, B. Evaluating the effect of shade trees on provision of ecosystem services in intensively managed coffee plantations. Agriculture, Ecosystems and Environment, Amsterdam, v. 245, p. 32–42, 2017. DOI:10.1016/j.agee.2017.05.005.

MORAIS, H.; MEDRI, M. E.; MARUR, C. J.; CARAMORI, P. H.; RIBEIRO, A. M. A.; GOMES, J. C. Modifications on leaf anatomy of Coffea arabica caused by shade of Pigeonpea (Cajanus cajan). Brazilian Archives of Biology and Technology, Curitiba, v. 47, n. 6, p. 863-871, 2004.

MORAIS, H.; CARAMORI, P. H.; RIBEIRO, A. M. A.; GOMES, J. C.; KOGUISHI, M. S. Microclimatic characterization and productivity of coffee plants grown under shade of pigeonpea in Southern Brazil. Pesquisa Agropecuária Brasileira, Brasília, v. 41, n. 5, p. 763-770, 2006. DOI:10.1590/S0100-204X2006000500007.

MUSCHLER, R. G. Shade improves coffee quality in a sub-optimal coffee-zone of Costa Rica. Agroforestry Systems, v. 51, n. 2, p. 131–139, 2001. DOI: 10.1023/A:1010603320653.

NUNES, A. L. P.; CORTEZ, G. L. S.; ZARO, G. C.; ZORZENONI, T. O.; MELO, T. R.; FIGUEIREDO, A.; AQUINO, G. S.; MEDINA, C. C.; RALISCH, R.; CARAMORI, P. H.; GUIMARÃES, M. F. Soil morphostructural characterization and coffee root distribution under agroforestry system with Hevea Brasiliensis. Scientia Agricola (on line), Piracicaba, v. 78, n. 6, 2021. DOI:10.1590/1678-992X-2019-0150.

NITSCHE, P. R.; CARAMORI, P. H.; RICCE, W. S.; PINTO, L. F. D. Atlas Climático do Estado do Paraná. Instituto de Desenvolvimento Rural do Paraná, Londrina, PR, Brasil. 2019. Available at: http://www.idrparana.pr.gov.br/Pagina/Atlas-Climatico. Accessed July 10, 2021.

OVALLE-RIVERA, O.; LÄDERACH, P.; BUNN, C.; OBERSTEINER, M; SCHROTH, G. Projected Shifts in Coffea arabica Suitability among Major Global Producing Regions Due to Climate Change. PLoS ONE (on line), v. 10, n. 4, 2015. DOI:10.1371/journal.pone.0124155.

PEREIRA, A. V.; PEREIRA, E. B. C.; FIALHO, J. S.; JUNQUEIRA, N. T. V.; MACEDO, R. L. G.; GUIMARÃES, R. J. Sistemas agroflorestais de seringueira com cafeeiro. Planaltina: Embrapa-CPAC. 1998. 77 p. (EMBRAPA-CPAC, DOCUMENTOS, 70).

PEZZOPANE, J. R. M.; PEDRO JÚNIOR, M. J.; GALLO, P. B. Radiação solar e saldo de radiação em cultivo de café a pleno sol e consorciado com banana Prata Anã. Bragantia, v. 64, n. 3, p. 485-497, 2005. DOI: 10.1590/S0006-87052005000300019.

PEZZOPANE, J. R. M.; Marsetti, M.; Simões, M.; Souza, J. M.; Pezzopane, J. E. M.

Condições microclimáticas em cultivo de café conilon a pleno sol e arborizado com nogueira macadâmia. Ciência Rural, v. 40, n. 6, 2010. DOI:10.1590/S0103-84782010005000098

SILES, P.; HARMAND, J-M.; VAAST, P. Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in Costa Rica. Agroforestry Systems, v. 78, n. 3, p. 269-286, 2010. DOI:10.1007/s10457-009-9241-y.

SOUSA, J. S.; NEVES, J. C. L.; MARTINEZ, H. E. P.; ALVAREZ, V. V. H. Relationship between coffee leaf analysis and soil chemical analysis. Revista Brasileira de Ciência do Solo, v. 42, 2018. DOI:10.1590/18069657rbcs20170109.

VALENTINI, L. S. P.; CAMARGO, M. B. P.; ROLIM, G. S.; SOUZA, P. S.; GALLO, P. B. Temperatura do ar em sistemas de produção de café arábica em monocultivos e arborizados com seringueira e coqueiro anão na região de Mococa-SP. Bragantia, Campinas, v. 69, n. 4, p. 1005-1010, 2010. DOI:10.1590/S0006-87052010000400028.

VIEIRA JUNIOR, N. A.; CARAMORI, P. H.; SILVA, M. A. A. E.; NITSCHE, P. R. Minimum temperature differences between the meteorological screen and grass in radiative frost nights. Semina Ciências Agrárias, Londrina, v. 39, n. 6, p. 2337-2349, 2018. DOI: 10.5433/1679-0359.2018v39n6p2337.

ZARO, G. C.; CARAMORI, P. H.; YADA JUNIOR, G. M.; SANQUETTA, C. R.; ANDROCIOLI FILHO, A.; NUNES A. L. P.; PRETE, C. E. C.; VORONEY, P. Carbon sequestration in an agroforestry system of coffee with rubber trees compared to open-grown coffee in southern Brazil. Agroforestry systems, v. 94, n. 2, p. 799-809, 2020. DOI:10.1007/s10457-019-00450-z.




DOI: http://dx.doi.org/10.31062/agrom.v30.e026934

Apontamentos

  • Não há apontamentos.


Embrapa Trigo

Rodovia BR-285, km 294, Caixa Postal: 3081

CEP 99050-970 Passo Fundo/RS