Estimacion de tiempo termico para germinación y emergencia de roble (Quercus robur) en invernáculo

Alvaro Manuel Lamas, Silvina Maio

Resumo


Muchas plantas crecen a partir de semillas, y la germinación es la primera y fundamental etapa de crecimiento de la producción de cultivos y por lo tanto de alimentos. La temperatura es uno de los principales factores ambientales que controlan la germinación y la siguiente fase fenológica, la emergencia. Esta investigación analizó la influencia de térmica sobre la germinación y emergencia de bellotas de roble (Quercus robur) en invernáculo. A partir de los valores de Temperatura base y de temperatura media permiten estimar los tiempos térmicos para la germinación y emergencia, siendo una herramienta muy eficaz para predecir los tiempos de ambas fases, en condiciones ambientales fluctuantes. La germinación se produce en un rango de 917°/dia a 1095°/dia, mientras que la emergencia ocurre en el rango de 1182,4°/día a 1351,4°/dia. Por lo tanto, la germinación y la emergencia de brotes son respuestas altamente dinámicas y adaptables que permiten que esta especie pueda producirse en condiciones controladas de invernáculo durante casi todo el año.


Palavras-chave


bioclimatología; temperatura base; fenología

Texto completo:

PDF (Español (España))

Referências


BASKIN, C. C.; BASKIN, J. M. Seeds: Ecology, biogeography, and evolution of dormancy and germination (2nd ed.). London, UK: Elsevier Academic Press. 2014.

BATLLA, D.; BENECH-ARNOLD, R .L. A framework for the interpretation of temperature effects on dormancy and germination in seed populations showing dormancy. Science Research: Seed Sci Res. 25(2):147–58. 2015.

BEWLEY, J. D.; BRADFORD, K.; HILHORST, H.; NONOGAKI H. Seeds: physiology of development, germination and dormancy, 3rd edn. Springer, New York, p 313. 2013.

BONNER, F. T.; VOZZO, J. A. Seed biology and technology of Quercus. General technical report SO-66. U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, New Orleans. 1987.

CÔME, D.; CORBINEAU, F. Germination rate. In: BLACK, M.; BEWLEY, J. D.; HALMER, P. (eds) The Encyclopedia of seeds: science technology and uses. Cromwell Press, Trowbridge, p 273. 2006.

CORBINEAU, F.; DACHER, F.; CÔME, D. Influence de la durée de conservation des glands au froid et de la température de germination sur le développement des plantules de chêne sessile. Rev For Fr LIII 32–43. 2001.

CRISTAUDO, A. C.; CATARA, S.; MINGO, A.; RESTUCCIA. A.; ONOFRI, A. Temperature and storage time strongly affect the germination success of perennial Euphorbia species in Mediterranean regions. Ecol Evol. 2019;9 (19):10984-10999. Published 2019 Sep 21. doi:10.1002/ece3.5535. 2019.

CRISTAUDO, A.; GRESTA, F.; RESTUCCIA, A.; CATARA, S.; ONOFRI, A. Germinative response of redroot pigweed (Amaranthus retroflexus L.) to environmental conditions: Is there a seasonal pattern? Plant Biosystems, 150(3), 583–591. 10.1080/11263504.2014.987845. 2016.

DAHAL, P.; RADFORD, K. J. Hydrothermal time analysis of tomato seed germination at suboptimal temperature and reduced water potential. Seed Sci. Res. 4, 71–80.1994.

DEY, D. C.; BUCHANAN, M. Red oak (Quercus rubra L.) acorn collection, nursery culture and direct seeding: a literature review. Report number: Forest Research Information Paper No. 122. Affiliation: Ontario Ministry of Natural Resources, Ontario Forest Research Institute. 1995.

DEY, D. C. Sustaining oak forests in eastern North America: regeneration and recruitment, the pillars of sustainability. For Sci 60:926–942. 2014.

DÜRR, C.; DICKIE, J. B.; YANG, X. Y.; PRITCHARD, H. W. Ranges of critical temperature and water potential values for the germination of species worldwide: contribution to a seed trait database. Agric Forest Met 200:222–232. Available online at http://www.sciencedirect.com/ science/article/pii/S0168192314002482#. 2015.

FARMER, R. E. Epicotyl dormancy in white and chestnut oaks. For Sci 23:329–332. 1977.

FINCH-SAVAGE, W.; LEUBNER-METZGER, G. Seed dormancy and the control of germination. The New Phytologist, vol. 171, no. 3, pp. 501- 523. 2006.

FORCELLA, F.; BENECH ARNOLD, R. L.; SANCHEZ, R.; GHERSA, C. M.; Modeling seedling emergence. F Crop Res. ; 67(2):123–39. 2000.

GARCÍA-MARTÍN, G.; GONZÁLEZ-BENITO, E. M.; MANZANERA, J.A. Quercus suber L. Somatic embryo germination and plant conversion: Pretreatments and germination conditions. In Vitro Cell. Dev.Biol.- Plant 37, 190–198. 2001.

GRESTA, F.; CRISTAUDO, A.; ONOFRI, A.; RESTUCCIA, A.; AVOLA, G. Germination response of four pasture species to temperature, light, and post-harvest period. Plant Biosystems, 144(4), 849–856. 10.1080/11263504.2010.523549. 2010.

GUIBERT, M.; LE PICHON, C. Influence de la température sur la germination, la levée et sur les taux de semis átiges multiples chez le chêne sessile. Rev For Fr LIII 44–54. 2001.

HEINZ S. I. Population biology of Typha latifolia L. and Typha angustifolia L.: establishment, growth and reproduction in a constructed wetland. Technische Universität München; 2012.

LABOURIAU, L. G. ; AGUDO, M., On the physiology of seed germination in Salvia hispanica L. I. Temperature effects. Anais da Academia Brasileira de Ciências, vol. 59, pp. 37-56. 1987.

MC CARTAN, S.; JINKS, R. L.; BARSOUM, N. Using thermal time models to predict the impact of assisted migration on the synchronization of germination and shoot emergence of oak (Quercus robur L.). Annals of Forest Science 72:479–487. 2015.

NOLAND, T. L.; MORNEAULT, A. M.; DEY, D.; DEUGO, D. The effect of storage temperature and duration on northern red oak acorn viability and vigour. Forestry Chronicle, DOI: 10.5558/tfc2013-139. 2013.

OLIET, J.A.; DE CASTRO, A. V.; PUÉRTOLAS, J. Establishing Quercus ilex under Mediterranean dry conditions: sowing recalcitrant acorns versus planting seedlings at different depths and tube shelter light transmissions. New For 46:869–883. 2015.

OLSON, D. F. Quercus L. Oak. In C.S. Schopmeyer (ed.). Seeds of Woody Plants in the United States. pp. 692–703. USDA For. Serv., Agric. Handbk No. 450, Washington, DC.1974.

ORRÙ, M.; MATTANA, E.; PRITCHARD, H. W.; BACCHETTA, G. Thermal thresholds as predictors of seed dormancy release and germination timing: altitude-related risks from climate warming for the wild grapevine Vitis vinifera subsp. sylvestris. Ann. Bot. 110, 1651–1660. 2012.

PASCALE, A. J.; DAMARIO, E. M. Bioclimatología Agrícola y Agroclimatología. Ed. Facultad de Agronomía, Universidad de Buenos Aires. ISBN 950-29-0822.8. 2004.

PRITCHARD, H. W.; MANGER, K. R. Quantal response of fruit and seed-germination rate in Quercus robur L and Castanea sativa Mill to constant temperatures and photon dose. Journal of Experimental Botany 41, 1549-1557. 1990.

PRITCHARD, H. W.; TOMPSETT, P. B.; MANGER, K. R. Development of a thermal time model for the quantification of dormancy loss in Aesculus hippocastanum seeds. Seed Science Research 6, 127-135. 1996.

SUSZKA, B.; MULLER, C.; BONNET-MASIMBERT, M. Seeds of forest broad-leaves from harvest to sowing Translated by A.G. Gordon. INRA, France. 1996.

TRUDGILL, D. L.; HONEK, A.; L. I, D.; VAN STRAALEN, N. M. Thermal time - Concepts and utility. Annals of Applied Biology, 146:1-14. 2005.

WAREING, P. F. Germination and dormancy. In: MORRIS, M. G. (ed) Physiology of plant growth and development. McGraw Hill, New York, pp 605–644. 1969.

WIGSTON, D. L. Epicotyl dormancy in Quercus robur L. Q. J. For 81: 110–112. 1987.

ZHANG, R.; BASKIN, J. M.; BASKIN, C. C.; MO, Q. ; CHEN, L.; HU, X.; WANG, Y. Effect of population, collection year, after-ripening and incubation condition on seed germination of Stipa bungeana . Scientific Reports, 7(13893), 1–11. 10.1038/s41598-017-14267-2. 2017.




DOI: http://dx.doi.org/10.31062/agrom.v28.e026740

Apontamentos

  • Não há apontamentos.


Embrapa Trigo

Rodovia BR-285, km 294, Caixa Postal: 3081

CEP 99050-970 Passo Fundo/RS