Effects of a straw layer over bare soil on surface and soil variables in Southern Brazil

Geovane Webler, Debora Regina Roberti, Marcelo Bortoluzzi Diaz, Anderson Luiz Zwirtes, Claudio Alberto Teichrieb, Lidiane Buligon, Paulo Ivonir Gubiani, Dalvan José Reinert


Changes in land use can have significant impacts on physical processes that act between the surface and atmosphere. Crop residues deposited on the soil surface can affect soil response to environmental variables. In this work, we analyze the effects of straw layers (SL) bare soil (BS) soil on surface and soil variables in a subtropical climate region in southern Brazil. We analyze measured data of surface temperatures, soil temperatures, soil volumetric water content and soil heat flux from May to November 2015, , with straw layer replaced three time. The presence of a straw layer increase soil volumetric water content (VWC) by 5% to 15%, decrease the surface and soil temperatures and the soil heat flux, besides present a lower thermal amplitude than bare soil. The soil and surface temperature are more sensitive to VWC variations in bare soil. These results can be applied in land surface and agricultural models to better represent the thermal soil behavior.


straw layer, bare soil, surface albedo, soil heat flux, volumetric water content

Texto completo:

PDF (English)


ARBAGE, M. C. A. et al. 2008. Turbulent statistical characteristics associated to the north wind phenomenon in southern Brazil with application to turbulent diffusion. Physica A: Statistical Mechanics and its Applications 387(16–17): 4376–86. http://linkinghub.elsevier. com/retrieve/pii/S0378437108002495.

ARYA, S. P. 2001. Introduction to Micrometeorology. Second Edi. Academic Press. 420p.

BAGLEY, J. E., MILLER, J.; BERNACCHI, C. J. 2015.Biophysical impacts of climate-smart agriculture in the Midwest United States. Plant, Cell and Environment 38(9): 1913–30.

DALMAGO, G. A. et al. 2010. Evaporação da água na superfície do solo em sistemas de plantio direto e preparo convencional. Pesquisa Agropecuaria Brasileira 45(8): 780–90.

FURLANI, C. E. A. et al. 2008. Temperatura do solo em função do preparo do solo e do manejo da cobertura de inverno. Revista Brasileira de Ciência do Solo 32(1): 375–80. http://www.scielo.br/scielo. php?script=sci_arttext&pid=S0100-06832008000100035&lng=pt&tlng=pt.

GASCOIN, S. et al. 2009. Sensitivity of bare soil albedo to surface soil moisture on the Moraine of the Zongo Glacier (Bolivia). Geophysical Research Letters 36(2): 2–6.

HANKS, R. J. 1992. 8 Applied Soil Physics. New York, NY: Springer New York. http://link.springer.com/10.1007/978-1-4612-2938-4.

HEITMAN, J.L. et al. 2010. Latent heat in soil heat flux measurements. Agricultural and Forest Meteorology 150(7–8): 1147–53. http:// linkinghub.elsevier.com/retrieve/pii/S0168192310001267.

JIN, M.; MULLENS, T. 2014. A study of the relations between soil moisture, soil temperatures and surface temperatures using ARM Observations and Offline CLM4 Simulations. Climate 2(4): 279–95. http://www.mdpi.com/2225-1154/2/4/279/.

KUMAR, R.; DEY, S. 2014. Seasonal and diurnal variability of albedo and soil moisture over ranchi. Global Journal of Management And Business Research 14(1).

LAGOS, L. O. et al. 2009. Surface energy balance model of transpiration from variable canopy cover and evaporation from residue-covered or bare-soil systems. Irrigation Science 28(1): 51–64.

LAKSHMI, V.; JACKSON, T. J.; ZEHRFUHS, D. 2003. Soil moisture-temperature relationships: results from two field experiments. Hydrological Processes 17(15): 3041–57. http://doi.wiley.com/10.1002/ hyp.1275.

LAW, B. E. et al. 2002. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology 113(1–4): 97–120. http://www.sciencedirect.com/ science/article/pii/S0168192302001041.

LI, R. et al. 2013. Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China. Agricultural Water Management 116: 101–9. https://linkinghub.elsevier.com/retrieve/pii/S037837741200248X.

MEYERS, T. 2004. An assessment of storage terms in the surface energy balance of maize and soybean. Agricultural and Forest Meteorology 125(1–2): 105–15. http://linkinghub.elsevier.com/retrieve/pii/ S0168192304000620.

MOREIRA, V. S. et al. 2015. Seasonality of soil water exchange in the soybean growing season in Southern Brazil. Scientia Agricola 72(2): 103–13.

NOVAK, M. D., CHEN, W.; HARES, M. H. 2000. Simulating the radiation distribution within a barley-straw mulch. Agricultural and Forest Meteorology 102(2–3): 173–86.

OLIOSO, A.; SÒRIA, G.; SOBRINO, J.; DUCHEMIN, B. 2007. Evidence of low land surface thermal infrared emissivity in the presence of dry vegetation. IEEE Geoscience and Remote Sensing Letters 4(1): 112–16.

RAMAKRISHNA, A., TAM, H. M.; WANI, S. P.; LONG, T. D. 2006. Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in Northern Vietnam. Field Crops Research 95(2–3): 115–25.

SÁNDOR, R.; NÁNDOR FODOR, N. 2012. Simulation of soil temperature dynamics with models using different concepts. TheScientificWorldJournal 2012: 590287. http://www.scopus.com/ inward/record.url?eid=2-s2.0-84871706532&partnerID=tZOtx3y1.

SARKAR, S.; PARAMANICK, M.; GOSWAMI, S. B. 2007. Soil temperature, water use and yield of yellow sarson (Brassica Napus L. Var. Glauca) in relation to tillage intensity and mulch management under rainfed lowland ecosystem in Eastern India. Soil and Tillage Research 93(1): 94–101.

SARKAR, S.; SINGH, S. R. 2007. Interactive effect of tillage depth and mulch on soil temperature, productivity and water use pattern of rainfed barley (Hordium Vulgare L.). Soil and Tillage Research 92(1–2): 79–86.

SCHLESINGER, W. H.; JASECHKO, S. 2014. Transpiration in the global water cycle. Agricultural and Forest Meteorology 190: 115–17. http:// www.sciencedirect.com/science/article/pii/S0168192314000203.

STRECK, E. V. et al. 2002. Solos do Rio Grande do Sul. Porto Alegre: EMATER/RS: UFRGS, 2002. 107p.

USOWICZ, B. et al. 2016. The effect of biochar application on thermal properties and albedo of loess soil under grassland and fallow. Soil and Tillage Research (2015). http://www.sciencedirect.com/science/ article/pii/S0167198716300332.

WANG, K. et al. 2005. Variation of surface albedo and soil thermal parameters with soil moisture content at a semi-desert site on the Western Tibetan Plateau. Boundary-Layer Meteorology 116(1): 117–29.

WU, J.-H. et al. 2014. Effect of ground covers on soil temperature in urban and rural areas. Environmental & Engineering Geoscience 20(3): 225–37. http://eeg.geoscienceworld.org/cgi/doi/10.2113/ gseegeosci.20.3.225.

XIE, X.; LU, Y.; REN, T.; HORTON, R. 2019. Soil temperature estimation with the harmonic method is affected by thermal diffusivity parameterization. Geoderma 353: 97–103. https://linkinghub.elsevier. com/retrieve/pii/S001670611930268X.

ZHAO, Y. et al. 2014. Effects of straw mulch and buried straw on soil moisture and salinity in relation to sunflower growth and yield. Field Crops Research 161: 16–25. https://linkinghub.elsevier.com/retrieve/ pii/S0378429014000379.

DOI: http://dx.doi.org/10.31062/agrom.v27i2.26552


  • Não há apontamentos.

Embrapa Trigo

Rodovia BR-285, km 294, Caixa Postal: 3081

CEP 99050-970 Passo Fundo/RS