Measuring and modelling the radiation balance of an orange tree
Resumo
The crop radiation balance is related to plant transpiration and photosynthesis, being important in practical applications and theoretical studies envolving these two processes. For sparse and in hedgerows-forming crops, it is interesting to quantify the all-wave radiation absorbed by the canopy of single plants. In practice, direct measurement of radiant energy absorbed by a single plant is not an easy procedure requiring the positioning of several sensors incompassing the crown, whose measurements using the weight sum of radiation recorded by each sensor. Models to assess radiation balance of trees are the alternatives. Despite its simplifications, the model simulated reasonably well the all-wave net radiation of a citrus tree, tested for differente leaf area conditions on 15min-time (Willmott index of agreement, D from 0.95 to 0.97; RMSE from 0.33 to 0.77 MJ tree-1 15 min-1 and BIAS from 0.09 to -0.41 MJ tree-1 15min-1). On a day-time the performance of the model kept reasonably well (D = 0.95; RMSE = 13.91 MJ tree-1 15 min-1 and BIAS = -0.03 MJ tree-1 15 min-1).
Palavras-chave
Texto completo:
PDF (English)Referências
ALADOS, I.; FOYO-MORENO, I.; OLMO, F.J.; ALADOS-ARBOLEDAS, L. Relationship between net radiation and solar radiation for semi-arid shrub-land. Agricultural and Forest Meteorology, v.116, n.3-4, p.221-227, 2003. https://doi.org/10.1016/S0168-1923(03)00038-8
ALLEN, R.G.; PEREIRA, L.S.; RAES, D.; SMITH, M. Crop evapotranspiration – Guidelines for computing crop water requirements, Irrigation and drainage paper 56, United Nations Food and Agriculture Organization, Rome, 15p. 1998.
ANGELOCCI, L.R.; MARIN, F.R.; PILAU, F.G.; RIGHI, E.Z.; FAVARIN, J.L. Radiation balance of coffee hedgerows. Revista Brasileira de Engenharia Agrícola e Ambiental, v.12, n.3, p.274–281, 2008. http://dx.doi. org/10.1590/S1415-43662008000300008
ANGELOCCI, L.R.; VILLA NOVA, N.A.; COELHO FILHO, M.A.; MARIN, F.R. Measurements of net radiation absorbed by isolated acid lime trees (Citrus latifolia Tanaka). Journal of Horticultural Science & Biotechnology, v.79, n.5, p.699-703, 2004. DOI:10.1080/14620316.2004.1 1511829
ANNANDALE, J.G.; JOVANOVIC, N.Z.; CAMPBELL, G.S.; DU SANTOY, N.; LOBIT, P. Two dimensional solar radiation interception model for hedgerow fruit trees. Agricultural and Forest Meteorology, v.51, n.3-4, p.207-225, 2004. https://doi.org/10.1016/j.agrformet.2003.08.004
BATEN, MD. A.; KON, H. Comparisons of solar radiation interception, albedo and net radiation as influenced by row orientations of crops. Journal of Agricultural Meteorology, v. 53, n. 1, p. 29-39, 1997. https:// doi.org/10.2480/agrmet.53.29
BIUDES, M. S.; CAMPELO JÚNIOR, J. H.; NOGUEIRA, J. DE S.; SANCHES, L. Estimativa do balanço de energia em cambarazal e pastagem no norte do Pantanal pelo método da razão de Bowen. Revista Brasileira de Meteorologia, v. 24, n. 2 p. 135-143, 2009. http://dx.doi.org/10.1590/ S0102-77862009000200003
BRUNT, D. Physical and dynamical meteorology: Cambridge Univ. Press, 442p.
CARRASCO, M.; ORTEGA-FARÍAS, S. Evaluation of a model to simulate net radiation over a vineyard cv. Cabernet Sauvignon. Chilean Journal of Agricultural Research, v. 68, p. 156-165, 2008.
CHARLES-EDWARDS, D.A; THORNLEY, J.H.M. Light interception by an isolated plant. A simple model. Annals of Botany, v. 37, p.919-928, 1973.
COHEN, S.; FUCHS, M. The distribution of leaf area, radiation, photosynthesis and transpiration in a Shamouti orange hedgerow orchard. Part I. Leaf area and radiation. Agricultural and Forest Meteorology, v. 40, p. 123-144, 1987. https://doi.org/10.1016/0168- 1923(87)90002-5
COHEN, S.; MORESHET, S.; LE GUILOU, L.; SIMON, J.; COHEN, M. Response of citrus trees to modified radiation regime in semi-arid conditions. J. Exp. Bot. v. 48, p. 35-44, 1997. https://doi.org/10.1093/jxb/48.1.35
DE CASTRO, F.; FETCHER, N. Three-dimensional modelo of the interception of light bya a canopy. Agricultural and Forest Meteorology, v. 90, p. 215-233, 1998. DOI:10.1016/S0168-1923(97)00097-X
DOMINGO, F.; VILLAGARCÍA, L.; BRENNER, A. J.; Puigdefábregas, J. Measuring and modelling the radiation balance of a heterogeneous shrubland. Plant, Cell and Environment, v. 23, p. 27-38, 2000. https://doi. org/10.1046/j.1365-3040.2000.00532.x
GREEN, S.; MCNAUGHTON, K.G.; WÜNSCHE, J.N.; CLOTHIER, B. Modeling light interception and transpiration of apple canopies. Agronomy Journal, v. 95, p. 1380-1387, 2003. DOI:10.2134/agronj2003.1380
GREEN, S.R. Radiation balance, transpiration and photosynthesis of an isolated tree. Agricultural and Forest Meteorology, v. 64, p. 201-221, 1993. https://doi.org/10.1016/0168-1923(93)90029-H
GREEN, S.R.; GREER, D.H.; WÜNSCHE, J.N.; CASPARI, H. Measurement of light interception and utilization in an apple orchard. Acta Horticulturae, v. 557, p. 369-376, 2001. 10.17660/ActaHortic.2001.557.49
GREEN, S.R.; MCNAUGHTON, K.G. Modelling effective stomatal resistance for calculating transpiration from an apple tree. Agricultural and Forest Meteorology, v. 83, p. 1-26, 1997. https://doi.org/10.1016/S0168- 1923(96)02362-3
GREEN, S.R.; MCNAUGHTON, K.G.; GREER, D.H.; MCLEOD, D.J. Measurement of the increased PAR and net all-wave radiation absorption by an apple tree caused by applying a reflective ground covering. Agricultural and Forest Meteorology, v. 76, p. 163-183, 1995. https://doi. org/10.1016/0168-1923(95)02228-P
LANDSBERG, J.J.; BEADLE, C.C.; BISCOL, P.V.; BUTLER, D.R.; DAVIDSON, B.; INCOLL, L.D.; JAMES, G.B.; JARVIS, P.G.; MARTIN, P.J.; NEILSON, R.E.; POWELL, D.B.B.; SLACK, E.M.; THORPE, M.R.; TURNER, N.C.WARRIT, B.; WATTS, W.R. Diurnal energy, water and CO2 exchanges in an apple (Malus pumila) orchard. Journal of Applied Ecology, v. 12, p. 645-683, 1975. DOI: 10.2307/2402181
LÓPEZ-OLIVARI, O.; ORTEGA-FARÍAS, S.; MORALE, L.; VALDÉS, H. Evaluation of three semi-empirical approaches to estimate the net radiation over a drip-irrigated olive orchard. Chilean Journal of Agricultural Research, v. 75, n. 3, p. 341-349, 2015. http://dx.doi.org/10.4067/S0718- 58392015000400011.
MARIN, F.R. Evapotranspiração e transpiração máxima em cafezal adensado. 2003. 118p. Tese (Doutorado). Universidade de São Paulo.
MARIN, F.R. Evapotranspiração, transpiração e balanço de energia em pomar de lima ácida Tahiti. 2000. 74p. Dissertação (Mestrado). Universidade de São Paulo.
MCNAUGHTON, K.G.; GREEN, S.R.; BLACK, T.A.; TYNAN, B.R.; EDWARDS, W.R.N. Direct measurement of net radiation and photosynthetically active radiation absorbed by a single plant. Agricultural and Forest Meteorology, v. 62, p. 87-107, 1992. https://doi.org/10.1016/0168- 1923(92)90007-Q
MONTEITH, J.L.; SZEICZ, G. The radiation balance of bare soil and vegetation. Quartely Journal of the Royal Meteorological Society, v. 87, p. 159-170, 1961. https://doi.org/10.1002/qj.49708737205
NKEMDIRIM, L.C. Radiative flux relations over crops. Agricultural Meteorology, v. 11, p. 229-242, 1973. https://doi.org/10.1016/0002- 1571(73)90066-6
NORMAN, J.M. Modeling the complete crop canopy. In: Barfield, B.J.; Gerber, J.F. Modification of the aerial environment of plants. St. Joseph: ASAE , 1979. cap.2, p. 249-278.
NORMAN, J.M.; WELLES, J.M. Radiative transfer in an array of canopies. Agronomy Journal, v. 75, p. 481-488, 1983. doi:10.2134/agronj1983.0002 1962007500030016x
OLIVEIRA, A.P.; MACHADO, A.J.; ESCOBEDO, J.F. A New Shadow-Ring Device for Measuring Diffuse Solar Radiation at the Surface. Journal of Atmospheric and Oceanic Technology, v. 19, p. 698-708, 2002. https:// doi.org/10.1175/1520-0426(2002)019<0698:ANSRDF>2.0.CO;2
PILAU, F.G.; ANGELOCCI, L.R. Leaf area and solar radiation interception by orange tree top. Bragantia, v. 74, n. 4, p. 476-482, 2015. http://dx.doi. org/10.1590/1678-4499.0130
RÖHRIG, M.; STÜTZEL, H.; ALT, C. A three-dimensional approach to modeling light interception in heterogeneous canopies. Agronomy Journal, v. 91, p. 1024-1032, 1999. doi:10.2134/agronj1999.9161024x
SIMON, J.; ANGELOCCI, L.R. Saldo de radiação em cafeeiros e limeiras: relações com saldo de radiação de gramado e radiação global. Revista Brasileira de Engenharia Agrícola e Ambiental. v. 18, n. 12, p. 1218– 1227, 2014. DOI:10.1590/1807-1929/agriambi.v18n12p1218-1227
THORPE, M.R. Net radiation and transpiration of apple trees in rows. Agricultural and Forest Meteorology, v. 19, p. 41-57, 1978. https://doi. org/10.1016/0002-1571(78)90037-7
VALE, F.X.R. et al. Quantificação de doenças - Quant: versão 1.0.1. Viçosa: UFV, Software, 2001.
WANG, Y.P.; JARVIS, P.G. Description and validation of an array model – MAESTRO. Agricultural and Forest Meteorology, v. 51, p. 257-280, 1990. https://doi.org/10.1016/0168-1923 (90)90112-J
WARREN WILSON, J. (1981). Analyses of light interception by single plants. Annals of Botany, v. 48, p. 501-505, 1981. https://www.jstor.org/ stable/42754079
DOI: http://dx.doi.org/10.31062/agrom.v26i2.26398
Apontamentos
- Não há apontamentos.
Embrapa Trigo
Rodovia BR-285, km 294, Caixa Postal: 3081
CEP 99050-970 Passo Fundo/RS