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Introduction

Brazil is the largest producer and exporter of soybeans 
in the world, accounting for half of the soybean global 
market. The country raised US$ 28 billion from soybean 
exports in 2020, which represents a third of the national 
agricultural sector exports (FAO, 2022). Variations in 
Brazilian soybean may affect the national economy 
and global food prices. Droughts and heat are the main 
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This study aimed at developing a soybean yield monitoring system based on a crop 
model. Previously calibrated and validated FAO Agro-Ecological Zone (FAO-AEZ) 
crop model was used to simulate soybean yields for 59 agroclimatic homogenous 
zones distributed across the Brazilian territory. The spatial performance of FAO-AEZ 
to simulate soybean yield at homogenous zones level was computed by comparing 
simulated median soybean yield with observed soybean yield data from national 
records after applying a trend correction on the time series of 2011 to 2020. To 
monitor the soybean crop in-season performance, we computed the soybean crop 
yield anomaly representing the in-season yield variation in relation to five previous 
cropping seasons with the same sowing dates. The in-season analysis was limited 
to the most recent cropping seasons reported by the national bulletins (2021 and 
2022). The FAO-AEZ crop model performance between 2011 and 2020 reached an r2 
of 0.59 and an RMSE of 402 kg ha-1 when compared to historical national statistics. 
In turn, the in-season analysis for 2022 revealed the model’s capacity to anticipate 
signs of negative yield trends three months in advance compared to national 
bulletins. National yield estimations are possible at earlier months of the season 
further improving the prediction performance when approaching the end.
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causes of the widespread historical crop yield failures 
in Brazil, which caused a shortfall of 10 million tons in 
2012 (Nóia Júnior et al., 2020). National yield prediction 
systems for soybeans in Brazil are important to minimize 
possible disruptions in food supply, helping agricultural 
commodity stakeholders and policymakers to plan 
mitigation strategies in advance.

Soybean crop yield monitoring and surveying in 
Brazil is a responsibility of the National Supply Company 
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(CONAB), which is a governmental institute under the 
Ministry of Agriculture, Livestock, and Food Supply. The 
CONAB releases monthly agricultural bulletins during the 
soybean cropping season from October to July, with yield 
and production prospects mostly based on field surveys 
with observations made by crop experts together with 
market signals, remote sensing, and weather analysis 
from all soybean-producing regions. For the 2022 cropping 
season, for instance, CONAB’s expectation in October 2021 
was for national soybean production to exceed 140 million 
tons, but a historical drought in January of 2022 decreased 
the expectation to less than 125 million a few months later 
(CONAB, 2022). The soybean monitoring over the cropping 
season made by CONAB is resource-intensive and time-
consuming, which could be facilitated with the adoption 
of crop simulation models as an additional source of 
information.

Crop simulation models employed to predict soybean 
yield in Brazil have been the topic of several studies in the 
last years (Battisti et al., 2017; Silva et al., 2021). These studies 
helped to identify management practices to minimize the 
potential impacts of climate variability and climate change 
on soybean yield (Battisti & Sentelhas, 2017, 2019; Battisti 
et al., 2017; Nóia Júnior & Sentelhas, 2019; Silva et al., 2021), 
as well as to quantify its yield potential through yield gap 
analysis (Nóia Júnior & Sentelhas, 2020; Sentelhas et al., 
2015). Many crop simulation models, such as AQUACROP 
(Steduto et al., 2009), DSSAT CROPGRO–Soybean (Boote 
et al., 2003; Hoogenboom et al., 2018), APSIM Soybean 
(Keating et al., 2003), MONICA (Nendel et al., 2011), and FAO 
Agro-ecological Zone (FAO-AEZ) (Doorenbos & Kassam, 
1979; Kassam, 1977), were tested and demonstrated a 
good performance across a range of Brazilian growing 
conditions (Battisti et al., 2017; Sampaio et al., 2020; Silva 
et al., 2021). However, crop models usually require detailed 
information on initial conditions, soils, cultivars, and crop 
management at a field level, often hindering their use to 
simulate crop yield at broader scales such as the national 
level.

Some crop simulation models, such as the SIMPLE 
(Zhao et al., 2019) and the FAO-AEZ require only commonly 
available inputs including daily weather data, crop 
management, and soil water holding parameters. These 
models include temperature and water, but no nutrient 
stress (Doorenbos & Kassam, 1979; Zhao et al., 2019). In 
addition, they miss the waterlogging and plant disease 
effects on crop growth, as most of the existing crop 
simulation models (Rötter et al., 2018). Thus, these simpler 
models should be applied to simulate crop yields only 
where waterlogging, pests, plant diseases, and nutrients 
are not major limiting factors.

With an average national soybean yield of 3.4 t ha-

1, Brazil is among the five countries with the highest 

soybean yield in the world (FAO, 2022). In its production 
systems, pests, plant diseases, and nutrient losses are not 
the main factors behind its inter-annual yield variability 
observed across the country (Sentelhas et al., 2015). 
Waterlogging can occur in different Brazilian regions, but 
it is more common during soybean harvest at the end of 
January (Lima et al., 2019), when usually it no longer affects 
soybean yield but the quality of the harvested seed (Pasley 
et al., 2020). Droughts and high temperatures are the main 
factors behind soybean yield inter-annual variability in 
Brazil (Sentelhas et al., 2015), which are stress factors to 
crop yield considered by crop models, such as the FAO-
AEZ. Therefore, the objective of this study was to develop 
a soybean yield monitoring system in Brazil based on the 
simple and well-validated FAO-AEZ crop model.

Material and Methods

Soybean yield anomalies and agro-climatic 
homogenous zones for Brazil
A flowchart detailing the sequence of procedures 

adopted in this study is presented in Figure 1. 
Soybean yield from 278 geographical micro-regions for 

29 years from 1991 to 2019 (IBGE, 2022), representing the 
entire Brazilian soybean production were used to calculate 
yearly soybean yield anomaly. Yield anomalies (Yanm) were 
computed as the percent difference between observed 
(Yobs) and average (Yavg) trend-corrected yield divide by 
Yavg:

                   Equation (1)

Using yield anomalies, a hierarchical clustering analysis 
was performed across the geographical micro-regions and 
the 29 years. As a result, 59 soybean homogenous zones 
were defined based on their agro-climatic conditions, 
in a similar procedure as suggested for wheat in Brazil 
by Nóia Júnior et al. (2021). The 59 soybean homogenous 
zones were distributed in 21 states, including the Federal 
district of Brazil (Table 1). In our hierarchical clustering 
analysis, we restricted the inclusion of regions within the 
same group to only those that are contiguous. Given that 
the analysis focused on yield anomaly rather than absolute 
or mean yield levels, the paramount consideration lies in 
the interannual variation of soybean yield, predominantly 
influenced by regional interannual climatic fluctuations. 
Consequently, our classification of soybean homogenous 
zones primarily delineates these zones based on their 
interannual climatic variability during the soybean 
growing season. The soybean yield was trend corrected 
with a linear regression, as demonstrated by Guarin et al. 
(2020).
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Locations, climate and soil data
This study considered one representative location 

within each of the 59 soybean agro-climatic homogenous 
zones (Table 1). These 59 locations were defined based on 
the soybean planting intensity, and the point with the 
largest soybean planted area was selected as the most 
representative for each zone. From each location, daily 
weather data including maximum and minimum air 
temperature and rainfall were obtained from the gridded 
weather source of NASA POWER (Prediction of Worldwide 
Energy Resources, https://power.larc.nasa.gov/). The 
NASA POWER was found to be a suitable weather database 
for characterizing weather patterns and estimating 
soybean yield in Brazil (Battisti et al., 2019).

The predominant soil types of each site were selected 
using the soil data from IBGE (2022). Information about 
sand, clay, and silt contents and bulk density for each 
soil type were obtained from national-wide official soil 
surveys (BRASIL, 1981), and the soil water holding capacity 
of each soil was estimated using pedo-transfer functions 
developed by Reichert et al. (2009) (Table S1).

Crop simulation model
This study simulated soybean yield by using the FAO – 

AEZ (Doorenbos & Kassam, 1979; Kassam, 1977). Calibration 
and validation of the FAO-AEZ to simulate soybean yield 
in Brazil was performed by Battisti et al. (2017). Battisti et 
al. (2017) calibrated and validated the FAO-AEZ using data 
from seven different locations distributed across Brazil in 
two cropping seasons (2014 and 2015) with several sowing 
dates (varying from October to January) and different 
regimes of water management. This model presented an 
average error of 640 kg ha-1, with a precision (r2) of 77% 
and an accuracy (Willmott agreement index) of 92%. The 
genetic coefficient parameters for simulating soybean 
yield with FAO-AEZ are presented in Table 2.

For running the crop model, the initial soil water 
content was defined based on the water balance initiated 
six months before sowing, considering the prior crop as 
fallow. The FAO-AEZ crop model does not simulate soybean 
crop cycle duration, and thus we set its duration according 
to each region following average values of the national 
registry of commercial cultivars from the Ministry of 

 

Figure 1. Flowchart of the procedures for soybean yield crop monitoring system in Brazil. 
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Agro-climatic 

homogenous zone
Location Longitude Latitude

Available water 

capacity

Soybean cycle 

duration

1 Bagé (RS) -54.36 -31.41 63 130

2 Mostardas (RS) -50.61 -30.64 38 130

3 Vacaria (RS) -50.94 -28.37 82 130

4 Maçambará (RS) -55.99 -29.04 78 130

5 Cruz Alta (RS) -53.44 -28.64 60 130

6 Francisco Beltrão (PR) -53.00 -26.00 78 120

7 Rio do Sul (SC) -49.66 -27.25 78 130

8 Lapa (PR) -49.97 -25.90 78 120

9 Prudentópolis (PR) -50.87 -25.31 78 120

10 Campo Mourão (PR) -52.45 -24.18 62 120

11 Santa Mariana (PR) -50.56 -23.00 78 120

12 Umuarama (PR) -53.37 -23.58 78 120

13 Itapeva (SP) -48.79 -23.91 68 120

14 Casa Branca (SP) -47.05 -21.67 69 120

15 Formiga (MG) -45.38 -20.45 78 120

16 Araçatuba (SP) -50.54 -21.12 45 120

17 Dourados (MS) -55.00 -22.25 75 120

18 Bonito (MS) -56.55 -21.26 73 120

19 Miranda (MS) -56.90 -19.88 75 120

20 Sidrolândia (MS) -54.80 -20.89 75 120

21 Água Clara (MS) -52.51 -20.63 56 120

22 Chapadão do Sul (MS) -52.64 -18.74 75 110

23 São Gabriel do Oeste (MS) -54.59 -19.31 75 110

24 Campina Verde (MG) -50.01 -19.67 53 120

25 Paracatu (MG) -47.09 -16.74 78 120

26 Goiatuba (GO) -49.71 -17.95 64 110

27 Jataú (GO) -51.98 -17.96 63 110

28 Itaberaí (GO) -49.77 -15.98 72 110

29 Porangatu (GO) -49.47 -13.29 64 110

30 Peixe (TO) -48.71 -12.07 68 120

31 Caseara (TO) -49.81 -9.59 70 120

32 Novo Acordo (TO) -47.45 -10.13 50 120

33 Balsas (MA) -46.16 -8.58 58 120

34 Baixa Grande do Ribeiro (PI) -44.91 -8.06 65 120

35 Parnarama (MA) -43.40 -5.56 55 120

36 Brejo (MA) -42.92 -3.69 66 120

37 Barreiras (BA) -46.13 -11.83 80 120

38 Grajaú (MA) -46.18 -5.79 54 120

39 Darcinópolis (TO) -47.81 -6.77 66 120

40 Conceição do Araguaia (PA) -49.47 -8.39 77 130

41 Paragominas (PA) -47.41 -3.07 77 130

42 Parauapebas (PA) -49.84 -6.07 76 130

43 Altamira (PA) -55.04 -8.62 72 130

44 Alto Paraíso (RO) -63.10 -9.54 76 110

45 Vilhena (RO) -60.32 -12.74 67 110

46 Juína (MT) -58.50 -11.54 70 110

47 Sinop (MT) -55.53 -12.00 60 110

48 São Félix do Araguaia (MT) -52.18 -11.22 61 110

49 Querência (MT) -52.27 -13.04 61 110

50 Paranatinga (MT) -54.10 -13.44 64 110

Table 1. Agro-climatic homogenous zones for soybean in Brazil, representative locations and their associated geographical coordinates, 
water capacity and soybean cycle duration.
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Agriculture, Livestock and Supply (MAPA, 2021).

In-season soybean crop monitoring
To monitor the soybean crop in-season performance, 

we computed the soybean crop yield anomaly, which 
represents the in-season yield variation in relation to 
previous cropping seasons. This anomaly was calculated 
based on the relationship between the simulated soybean 
yield for the current cropping season and the simulated 
yield for the last five cropping seasons, both with the 
same sowing dates. The yield anomaly is calculated based 
on the last five cropping seasons because Brazilian public 
and private companies use this period as a reference 
(so the results are comparable). This index is calculated 
for 16 sowing dates from September to January, with 
weekly intervals, comprising almost the entire soybean 
sowing window in Brazil (except for the Northern state of 
Roraima). The in-season crop yield anomaly is computed 
with 15 days intervals within the current cropping season, 
which means that the first monitoring date will be carried 
out 15 days after the first sowing date in September.

To compute the in-season crop yield anomaly for a 
specified sowing date, we simulated soybean yield using 
in-season observed weather data from the sowing date to 
the monitoring date, completed until the maturity date 
with the weather data of the last five cropping seasons. 
This is the same approach used by Nóia Júnior et al. (2022), 
where more detailed explanations are provided. At the 
same time, we simulated soybean yield using weather 
data for the entire five last cropping seasons. This means 
that the crop model is run with 5 replicates representing 
the pair of the current cropping season yield with five 
completions and the last five historical cropping season 

yields. The percent yield anomaly (Equation 2) is therefore 
calculated for each replicate and further averaged:

  Equation (2)

After the end of the main sowing window period in 
January, the crop yield anomaly is spatially aggregated 
to the state level using the 5-year average production 
intensity levels, and temporally aggregated considering 
the state sowing progression curve. These aggregations 
allowed the interpretation of the final in-season soybean 
yield anomaly across the Brazilian territory and the 
comparison with national bulletins released by IBGE and 
CONAB. The historical sowing progress is not available 
before 2020 (in this period the company did not monitor 
the sowing date or did not make it public), therefore the 
in-season analysis was limited to the most recent cropping 
seasons reported by CONAB in 2021 and 2022.

National soybean yield and statistical analysis
The statistical analyses were carried out using the R 

software (R Core Team, 2021). The spatial performance of 
FAO-AEZ to simulate soybean yield at homogenous zones 
level was computed by comparing simulated median 
soybean yield with observed soybean yield data from the 
IBGE after applying a trend-correction on the time series 
of 2011 to 2020 (IBGE, 2022b). For this, the simulated 
soybean yield was computed by multiplying the simulated 
yield anomaly by the observed average of soybean yield in 
the last 5 years for each agroclimatic homogenous zone. 
The performance of the FAO-AEZ to simulate historical 

51 Barra do Garãas (MT) -52.25 -15.60 53 110

52 Sapezal (MT) -58.91 -13.71 73 110

53 Vila Bela da Santíssima Trindade (MT) -59.60 -15.13 65 110

54 Cáceres (MT) -57.87 -15.82 60 110

55 Rondonópolis (MT) -54.74 -16.94 73 110

56 Januária (MG) -45.38 -15.24 66 120

57 São João d'Aliança (GO) -47.56 -14.64 76 120

58 Santarém (PA) -54.53 -2.60 71 130

59 Cachoeira do Sul (RS) -52.94 -30.13 60 130

Genetic coefficients Description Values

ky S-V2 Water deficit sensitivity index from sowing to second trifoliate 0.05

ky V2-R1 Water deficit sensitivity index from second trefoil to beginning of flowering 0.15

ky R1-R5 Water deficit sensitivity index from beginning of flowering to beginning of grain filling 0.4

ky R5-R7 Water deficit sensitivity index from beginning of grain filling to beginning of maturity 0.75

ky R7-R8 Water deficit sensitivity index from beginning of maturity to end of maturity 0.1

MRD Maximum root depth (m) 0.6

Table 2. Genetic coefficient parameters for simulating soybean yield with FAO-AEZ, according to Battisti et al. (2017).



Agrometeoros, Passo Fundo, v.32, e027580, 2024.

national soybean yield was computed with the following 
statistical indices: bias (mean error), coefficient of 
determination (r2), root mean square error (RMSE), and 
mean absolute percentage error (MAPE).

Results

Soybean homogenous agro-climatic zones
The 59-soybean homogenous agro-climatic zones 

(Figure 2) were defined based on soybean yield anomalies 
from 1991 to 2019. This analysis assumes that within a 
homogeneous zone, the soybean yield anomaly in a given 
year should be relatively similar among different locations. 
In 2012 the soybean anomaly was positive in practically all 
regions of northeastern Brazil (Figure 1b) but negative in 
most of southern Brazil (Figure 1d). In southern Brazil, 
regions that presented negative anomalies in 2012 and 
positive anomalies in 2020 formed different groups (e.g., 
G2 and G1), compared to the ones with negative anomalies 
in both years (e.g., G4 and G5). Similar results are shown 
for the northeastern region in 2012 and 2016 (Figure 1b 
and 1c). As the soybean anomaly is relatively similar in 
different years within the agro-climatic homogeneous 
zones, the monitoring of one representative location inside 
each one of these zones should be enough to represent the 
regional patterns (NÓIA JÚNIOR et al., 2021).

Performance of FAO-AEZ crop model to estimate 
observed regional soybean yield in Brazil 
The FAO-AEZ crop simulation historical model 

performance for soybean yield varied according to the 

soybean agro-climatic homogenous zones of Brazil (Figure 
3). The average bias of the soybean yield simulations varied 
from -318 to 236 kg ha-1, presenting the highest values in 
the northeast region of Brazil. For most of the locations, 
the bias presented positive values, indicating an overall 
underestimation of the crop model. The RMSE varied from 
83 to 848 kg ha-1. The highest values of the RMSE were 
obtained in central Brazil, particularly in the states of 
Mato Grosso do Sul and São Paulo. Northern Brazil, such 
as north of Mato Grosso and Rondônia states, presented 
the smallest values of RMSE across the country. The MAPE 
varied from 2 to 23%, with a spatial variation similar to 
RMSE, where the lowest values were found in the north 
and the highest values in south-central Brazil.

Overall, the simulation of soybean yield with FAO-AEZ 
crop simulation model for all homogenous agro-climatic 
zones showed an r2 of 0.59, RMSE of 402.5 kg ha-1, and a MAPE 
of 9.87% (Figure 4). The FAO-AEZ model overestimates 
soybean yield below 2,500 kg ha-1 and underestimates the 
soybean yield above 3,500 kg ha-1.

The observed yield from 2010 to 2020 is based on the 
reported yield from the Brazilian Institute of Geography 
and Statistics (IBGE, 2022a) for each location of the agro-
climatic homogenous zones in Brazil. The statistical 
indices for model performance are the Coefficient of 
determination (r2), Root Mean Squared Error (RMSE), and 
Mean Absolute Percentage Error (MAPE).

We tested the FAO-AEZ crop simulation model in 2016, 
a year with an extremely low of soybean yield in Brazil 
(Figure 5). The FAO-AEZ model captured the negative 
soybean yield anomaly in most parts of the Northeast, as 
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 259 

Figure 2. Soybean agro-climatic homogenous zones in Brazil. (a) Soybean agro-climatic homogenous zones in Brazil based on in-
terannual yield anomalies, and the soybean yield anomalies for northeastern in (b) 2012 and (c) 2016, and for southern in (d) 2012 and 
(e) 2020.
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well as in central regions of Brazil, such as central Mato 
Grosso and north of Goiás. The model also captured a 
positive soybean anomaly in south-central Brazil.

In-season soybean yield monitoring system in 2022
Given the ability of the FAO-AEZ to simulate soybean 

yield, we extend the analysis to simulate in-season 
soybean yield anomaly during the 2022 cropping season. 
This cropping season presented abnormal weather 
conditions, with droughts in the south and excessive rains 
in the north of Brazil, both from December to February. 
Our simulations with the FAO-AEZ model indicated in 
early January a positive soybean yield anomaly in the 

north and northeast of Brazil, and a negative anomaly in 
the south of Brazil (Figure 6a). In January, the simulations 
showed a soybean anomaly of almost -50% in the in the 
southernmost state of Brazil, Rio Grande do Sul. The 
CONAB’s official bulletins of January pointed to a drop 
in soybean yield in southern Brazil but of less than 10% 
(Figure 6c). In May, with the soybean harvest completed, 
the FAO-AEZ model indicated a soybean yield anomaly 
of more than 25% in three states in the southern region 
of Brazil, Mato Grosso do Sul, Paraná, and Rio Grande do 
Sul (Figure 6b). Similar results in southern Brazil were 
observed by the CONAB’s bulletins after harvest, in May 
(Figure 6d). The FAO-AEZ model also indicated a yield 

 279 

Figure 3. Spatial performance of FAO-AEZ crop model to simulate soybean yield in Brazil. The 280 

statistical indices for model performance are the bias (a), Root Mean Squared Error (RMSE) 281 

(b), and Mean Absolute Percentage Error (MAPE) (c). 282 
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Figure 3. Spatial performance of FAO-AEZ crop model to simulate soybean yield in Brazil. The statistical indices for model performance 
are the bias (a), Root Mean Squared Error (RMSE) (b), and Mean Absolute Percentage Error (MAPE) (c).

Figure 4. Observed versus simulated soybean yield with FAO-AEZ crop model.
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Figure 4. Observed versus simulated soybean yield with FAO-AEZ crop model. 290 

The observed yield from 2010 to 2020 is based on the reported yield from the Brazilian 291 

Institute of Geography and Statistics (IBGE, 2022a) for each location of the agro-climatic 292 

homogenous zones in Brazil. The statistical indices for model performance are the Coefficient 293 

of determination (r2), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error 294 

(MAPE). 295 

We tested the FAO-AEZ crop simulation model in 2016, a year with an extremely low of 296 

soybean yield in Brazil (Figure 5). The FAO-AEZ model captured the negative soybean yield 297 

anomaly in most parts of the Northeast, as well as in central regions of Brazil, such as central 298 

Mato Grosso and north of Goiás. The model also captured a positive soybean anomaly in 299 

south-central Brazil. 300 
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increase of up to 50% in the northeastern states of Brazil 
(Figure 6b), which was not reported by CONAB (Figure 
6d). The biweekly monitoring of the soybean yield during 

the 2022 cropping season with the FAO-AEZ model is 
available online at http://monitorasafra.gppesalq.agr.
br/, with results and description in Portuguese for better 

Figure 5. Comparison between (a) observed and (b) simulated soybean yield in 2016. The observed yield is from the Brazilian Institute 
of Geography and Statistics (IBGE, 2022a). Soybean yield was simulated with the FAO-AEZ crop model.
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Soybean yield was simulated with the FAO-AEZ crop model. 304 
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Figure 6. In-season monitoring system for soybean in Brazil during 2022 soybean cropping season. In-season soybean yield anomaly 
monitoring in January (a and c, three months before harvest) and in May (b and d, after harvest) simulated by FAO-AEZ crop model and 
released by the National Company Supply (CONAB, 2022).

Similar results in southern Brazil were observed by the CONAB's bulletins after harvest, in 318 

May (Figure 6d). The FAO-AEZ model also indicated a yield increase of up to 50% in the 319 

northeastern states of Brazil (Figure 6b), which was not reported by CONAB (Figure 6d). The 320 

biweekly monitoring of the soybean yield during the 2022 cropping season with the FAO-AEZ 321 

model is available online at http://monitorasafra.gppesalq.agr.br/, with results and 322 

description in Portuguese for better engagement with Brazilian stakeholders. An in-season 323 

state time-series visualization of yield anomaly is provided in Figure 7. 324 
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Figure 6. In-season monitoring system for soybean in Brazil during 2022 soybean cropping 327 

season. In-season soybean yield anomaly monitoring in January (a and c, three months before 328 
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engagement with Brazilian stakeholders. An in-season 
state time-series visualization of yield anomaly is provided 
in Figure 7.

Biweekly simulations of the in-season soybean yield 
anomaly monitoring system shown in 

Discussion

The use of homogeneous zones relates to political 
and demographic census where the concept of small 
representative samples can represent a population (Schug 
et al., 2021; Wardrop et al., 2018; Zahnd et al., 2019). In 
this study, this concept was applied to crop monitoring. 
With historical soybean yield anomaly from 1991 to 
2019, we defined 59 soybean agro-climatic homogenous 
zones in Brazil. The concept of this analysis is that if a 
region presents similar year-to-year yield variability (i.e., 
neighboring counties have similar positive or negative 
yield anomalies), considering that edaphoclimatic factors 
representing the regional patterns are relatively identical. 
This approach has been applied to estimate and forecast 
national wheat yields in Brazil (Nóia Júnior et al., 2021), 
and several other studies that quantify crop yield gaps and 
potential impacts of climate change on agriculture use a 
similar approach (Antolin et al., 2021; Asseng et al., 2015; 
Marin et al., 2016). However, the use of a single location to 

represent a larger region also has disadvantages and can 
generate erroneous estimates for some years, especially 
due to the spatial variability of extreme weather events 
that cannot be accounted for.

Crop simulation models and their improvement is a 
frequent topic in the scientific community (Maiorano et 
al., 2017; Wang et al., 2022, 2019). Despite this, crop models 
have proved to be a powerful tool for simulating yield 
and crop growth, particularly for estimating drought and 
heat impacts (Battisti et al., 2017; Sampaio et al., 2020). As 
high temperatures and drought are the main drivers of 
soybean year-to-year variability in Brazil, the FAO-AEZ 
crop model showed good overall performance (r2 = 0.59 
and RMSE = 402 kg ha-1, varying from 83 kg ha-1 to 848 
kg ha-1 according to the region in Brazil) to be used as a 
soybean monitoring system in Brazil (Figures 3 and 4). In 
comparison, Battisti et al. (2020) simulating yield data from 
IBGE, demonstrated a mean error of 15% (RMSE), whereas 
our error stands at 402 kg ha-1 or 11%. These results were 
obtained using climate data from NASA POWER, which 
could potentially be more accurate if local weather 
station data were utilized. However, such stations often 
suffer from significant missing data and are not evenly 
distributed geographically, complicating their national-
scale use. Similarly, if the study were based on a smaller 
regional scale, such as pixel-level analysis instead of using 

Figure 7. Regional in-season monitoring for soybean yield anomaly in Brazil during 2022 cropping season.
Soybean yield was simulated with the FAO-AEZ crop model. In-season soybean yield anomaly is represented by the red line, black line 
is the zero line, representing the expected yield (i.e., as the average of the last 5 years). The States are Bahia (BA), Goiás (GO), Maranhão 
(MA), Minas Gerais (MG), Mato Grosso do Sul (MS), Mato Grosso (MT), Pará (PA), Piauí (PI), Paraná (PR), Rondônia (RO), Rio Grande do 
Sul (RS), Santa Catarina (SC), São Paulo (SP) and Tocantins (TO).
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homogeneous zones, these results might be more precise 
and better depict subnational variations in soybean yield.

The FAO-AEZ crop model satisfactorily reproduced 
the spatial distribution of soybean yield anomaly in the 
2016 cropping season (Figure 5). In addition, it indicated 
early signs of extreme soybean yield loss during the 2022 
cropping season in January, three months before closing 
the soybean harvest (Figure 6). In January 2022, official 
reports from CONAB indicated a good expectation of 
soybean production with a national estimate of 140 Mt. 
This number changed in May, with CONAB updating the 
national soybean production expectation to about 125 Mt.

In-season analysis for the 2022 soybean cropping 
season showed that the FAO-AEZ crop model overestimated 
soybean yield anomaly in northeastern Brazil (Figure 
6) because excessive rainfall occurred in northeastern 
Brazil during the 2022 cropping season. The accumulated 
rainfall in January exceeded 500 mm, twice the normal 
for the region. This wet condition caused waterlogging 
and increased plant diseases, delaying soybean harvest, 
and causing anoxia and soybean seed rot (Dorigatti, 2021). 
Most of the existing crop simulation models, including the 
FAO-AEZ crop model, miss waterlogging and plant disease 
effects on crop growth, as well as the joint effects of many 
weather extremes (Rötter et al., 2018). The improvement 
of agricultural monitoring systems performance depends 
on crop model improvements to include some missing 
processes. But not only crop simulation models depend on 
these improvements. Increasingly sophisticated machine-
learning models need large, good-quality datasets to 
properly simulate crop yields (Paudel et al., 2022).

Crop simulation models would also benefit from good 
quality agricultural big datasets. For example, a limitation 
of this study was the lack of information about the 
soybean sowing date in different Brazilian regions before 
the year 2020. As soybean yield in Brazil highly varies 
according to the sowing date (Nóia Júnior & Sentelhas, 
2019), the performance of the model could have been 
better evaluated with accurate sowing progression data. 
In Brazil, CONAB started in 2021 to make available data 
on sowing date, phenology, and harvest progress over 
the cropping season at the state level. Even so, data with 
better spatial resolution would be important for testing 
crop modeling approaches. All these issues limit the 
improvement and implementation of crop monitoring and 
forecasting systems.

A soybean yield monitoring system at a regional 
resolution and with a crop simulation model may provide 
information on a spatial and temporal scale not available 
in the official forecasts (CONAB, 2022). The FAO-AEZ crop 
model only uses commonly available and public inputs 
including daily weather data, sowing date, and soil water 
holding parameters. With the FAO-AEZ crop model and 

weather data from NASA POWER (Power Project Team, 
2022), sowing date from the general reports of CONAB, 
and soil water holding from national soil surveys (BRASIL, 
1981), our soybean monitoring system could be updated on 
a daily basis to a target grid resolution of approximately a 
half degree, an improvement over the regional scale tested 
in this study.

It is important to mention that several studies have 
tested other methods to predict historical trends or 
forecast soybean yield in Brazil. Those methods rely mostly 
on machine learning with remote sensing or weather data, 
with variable prediction performance. Temporal analysis 
of vegetation indices obtained from satellite images can 
be used to explain a major part (60%) of the historical 
soybean yield variability with relatively moderate errors 
(Esquerdo et al., 2011; Liu & Kogan, 2002). More recently, 
the integration of both satellite information and weather 
data with machine learning has provided an improvement 
in the prediction capacity for forecasting in-season yield 
trends of a regional area in south Brazil, making possible 
the anticipation of potential crop shortages (Schwalbert 
et al., 2020). In addition, other prediction methods for 
soybean and other crops based on a time series of national 
reports employing machine learning were also tested 
and demonstrated satisfactory prediction performance 
(Abraham et al., 2020; Monteiro et al., 2022). However, the 
scaling of these methods over large geographical areas 
such as the Brazilian territory coupled with a routine that 
provides timely predictions for near-real-time monitoring 
may still be challenging due to computational and data 
restrictions. The approach employed in this study is based 
on a simple crop model running over representative 
locations of homogeneous zones and requiring minimal 
data input to facilitate national-wide monitoring and can 
be customized to other user needs or geographical extents.

Conclusion

A soybean monitoring system based on a simple 
crop model has been introduced for Brazil. The in-
season analysis for 2022 revealed the model’s capacity to 
anticipate signs of negative yield trends three months in 
advance compared to national bulletins. National yield 
estimations are possible at earlier months of the season 
further improving the prediction performance when 
approaching the end.

There is the potential to combine this method with 
other crop simulation models or machine-learning in an 
ensemble approach to improve yield estimates. We also call 
for the importance of continuing crop model development 
and improvement, as well as the increase availability of 
agricultural big data for further testing any model types 
to reduce uncertainties. Crop monitoring systems will 



Agrometeoros, Passo Fundo, v.32, e027580, 2024.

be increasingly important in a world with increasing 
variability of crop production due to climate effects.
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REFERENCIAÇÃO

 Sistema de monitoramento de produtividade de soja para o 
Brasil com o modelo FAO-AEZ

A variação anual na produtividade da soja no Brasil impacta diretamente a economia 
nacional e o abastecimento de alimentos. Este estudo propôs o desenvolvimento de 
um sistema de monitoramento da produtividade da soja baseado no modelo FAO 
Agro-Ecológico (FAO-AEZ), previamente validado e calibrado. O modelo foi utilizado 
para simular a produtividade da soja em 59 zonas homogêneas agroclimáticas 
em todo o Brasil. A avaliação do desempenho do modelo foi feita comparando as 
produtividades simuladas com dados observados de 2011 a 2020, corrigidos por 
tendências temporais. Além disso, foi realizada uma análise durante as safras de 
2021 e 2022, monitorando a variação da produtividade em relação às cinco safras 
anteriores com as mesmas datas de semeadura. Os resultados indicaram um 
bom desempenho do modelo, com um coeficiente de determinação de 0,59 e um 
Erro Quadrático Médio de 402 kg ha-1 em comparação com os dados nacionais. 
Notavelmente, o modelo conseguiu antecipar sinais de tendências negativas na 
produtividade com três meses de antecedência em relação aos boletins nacionais. 
Este sistema de monitoramento utiliza dados meteorológicos diários e parâmetros 
simples de manejo de cultivo, oferecendo uma abordagem flexível e eficaz para 
estimativas de produtividade da soja, com potencial para adaptação a diferentes 
necessidades e contextos.

História do artigo:

Recebido em 01 de fevereiro de 2024 

Aceito em 16 de julho de 2024

Termos para indexação: 

monitoramento de produtividade de 

culturas

segurança alimentar

Glycine max (L.) Merr.

anomalia de produtividade

INFORMAÇÕES RESUMO

© 2024 SBAgro. Todos os direitos reservados.

Rogério de Souza Nóia Júnior1(*), José Lucas Safanelli2, Lucas Fernandes de Souza3 e Durval Dourado Neto4

1TUM School of Life Sciences, Digital Agriculture. Technical University of Munich, Freising, Germany. Email: rogeriosouzanoia@gmail.com
2Woodwell Climate Research Center. Falmouth MA, USA. E-mail: jsafanelli@woodwellclimate.org
3Companhia Nacional de Abastecimeno - CONAB. Brasília, DF. E-mail: lucas.fsouza@agricultura.gov.br
4Escola Superior de Agricultura “Luiz de Queiroz”. Universidade de São Paulo, Piracicaba, SP. E-mail: ddourado@usp.br
(*)Autor para correspondência.

www.sbagro.org.brISSN 2526-7043 DOI: http://dx.doi.org/10.31062/agrom.v32.e027580


