Imputação múltipla livre de distribuição em tabelas incompletas de dupla entrada

Sergio Arciniegas-Alarcón, Carlos Tadeu dos Santos Dias, Marisol García-Peña

Resumo


O objetivo deste trabalho foi propor um novo algoritmo de imputação múltipla livre de distribuição, por meio de modificações no método de imputação simples recentemente desenvolvido por Yan para contornar o problema de desbalanceamento de experimentos. O método utiliza a decomposição por valores singulares de uma matriz e foi testado por meio de simulações baseadas em duas matrizes de dados reais completos, provenientes de ensaios com eucalipto e cana‑de‑açúcar, com retiradas aleatórias de valores em diferentes percentagens. A qualidade das imputações foi avaliada por uma medida de acurácia geral que combina a variância entre imputações e o viés quadrático médio delas em relação aos valores retirados. A melhor alternativa para imputação múltipla é um modelo multiplicativo que inclui pesos próximos a 1 para os autovalores calculados com a decomposição. A metodologia proposta não depende de pressuposições distribucionais ou estruturais e não tem restrições quanto ao padrão ou ao mecanismo de ausência dos dados.

Palavras-chave


dados ausentes; decomposição por valores singulares; ensaios multiambiente; experimentos desbalanceados; interação genótipo x ambiente; melhoramento de plantas

Texto completo:

PDF


Embrapa Sede
Parque Estação Biológica - PqEB - Av. W3 Norte (final) Caixa Postal 040315 - Brasília, DF - Brasil - 70770-901
Fone: +55 (61) 3448-2461