RESPOSTA DO ARROZ DE SEQUEIRO À PROFUNDIDADE DE ARAÇÃO, ADUBAÇÃO POTÁSSICA E CONDIÇÕES HÍDRICAS DO SOLO

LUIS FERNANDO STONE e JOSÉ ALOÍSIO ALVES MOREIRA

RESUMO - Estudaram-se, por dois anos, os efeitos de doses (0, 40, 80 e 120 kg de K₂O/ha) e métodos de aplicação de K (sem e com parcelamento), de profundidades de aração (10-15 cm e 30-35 cm) e de condições hídricas (sem e com estresse) sobre a produtividade das cultivas de arroz (*Oryza sativa* L.) Rio Paranaíba e CNA 6843-1. Na ausência de camada compactada no perfil do solo, a produtividade do arroz foi maior quando a aração foi feita a 10-15 cm de profundidade, independentemente das condições hídricas do solo. Esta profundidade de aração propiciou maior concentração de nutrientes na camada superficial do solo. Em solo com alto teor de K, sob estresse hídrico, a adubação potássica aumentou a produtividade da cultivar Rio Paranaíba, mas não afetou significativamente a da ‘CNA 6843-1’ pelo fato de o efeito do estresse ter sido mais drástico para ela. Na ausência de déficit hídrico não houve resposta significativa às doses de K. A falta de resposta ao parcelamento da adubação potássica pode ser explicada pelo fato de a lixiviação de K não ter sido muito elevada porque a semeadura do arroz foi feita após o período mais chuvoso.

Termos para indexação: *Oryza sativa*, estresse hídrico, parcelamento de potássio, lixiviação de potássio, preparo do solo.

RESPONSE OF UPLAND RICE TO PLOUGHING DEPTH, POTASSIUM FERTILIZATION, AND SOIL WATER STATUS

ABSTRACT - The effects of K levels (0, 40, 80, and 120 kg of K₂O/ha), K split application (with and without), ploughing depth (10-15 cm and 30-35 cm), and water stress (with and without) on the yield of upland rice were studied during two years. In the absence of a soil compacted layer rice yield was higher, independently of soil water status, when the soil was ploughed, at 10-15 cm deep. This ploughing depth promoted higher nutrient concentration in the surface layer. In soil with high K level, under water stress, the yield of the rice cultivar Rio Paranaíba increased with increasing K level, whereas the yield of ‘CNA 6843-1’ was not significantly affected, because a more severe effect of the water stress. Under non water-stress there was no response to K levels. The lack of response to K split application can be explained by the fact that K leaching was not so high due to rice sowing after the period of more intense rainfall.

Index terms: *Oryza sativa*, water stress, potassium split application, potassium leaching, soil preparation.

INTRODUÇÃO

Em 1994, 41,5% da produção brasileira de arroz originou-se de lavouras de sequeiro, que ocuparam 66% da área cultivada com essa cultura (Levantamento..., 1994). Grande parte dessas lavouras está localizada na região dos cerrados, onde é comum a ocorrência de estiagens de duas a três semanas du-
minimizar os efeitos do déficit hídrico (Seguy et al., 1984; Eck & Unger, 1985). Contudo, em solos sem problemas de compactação, Robertson et al. (1977) e Camp et al. (1984) observaram que o preparo profundo não aumentou a produtividade e que, por ser uma operação cara, requerendo equipamentos maiores e consumindo mais energia do que o preparo convencional, não deve ser generalizada (Robertson et al., 1976).

Especificamente com relação à cultura do arroz de sequeiro, Silveira et al. (1994) obtiveram maiores produtividades com aração a 30 cm em relação à profundidade de 15 cm, possivelmente devido à redução da compactação do solo. Esses autores verificaram que no preparo mais profundo houve diminuição, após quatro anos, da densidade do solo nas profundidades de 20 e 30 cm, o que não ocorreu com o preparo a 15 cm. Benatti Júnior et al. (1981), em solo Podzólico Vermelho-Amarello, por dois anos, obtiveram maiores produtividades do arroz com aração a 30 cm, e, em três anos, com aração a 10 cm, apesar de as diferenças não serem significativas.

Outra prática que também pode contribuir para minimizar os efeitos da deficiência hídrica é a adubação potássica em níveis adequados. Segundo Haeder (1971), nos locais onde a água é um fator limitante ao crescimento, é indispensável a aplicação de adubação potássica adequada, para assegurar a melhor utilização dos recursos hídricos. O efeito favorável pode ser atribuído à ação do K na regulação osmótica dos tecidos da planta, o que resulta em melhor capacidade de retenção de água, e em água disponível suficiente para a realização dos processos químicos na célula sob condições desfavoráveis (Hofner, 1971). Neiva (1977) verificou que cultivares de arroz de sequeiro foram beneficiadas pela adubação potássica, mantendo, durante período de seca, mais água em seus tecidos em relação ao das plantas que não receberam K.

Os objetivos deste trabalho foram verificar, em solo não compactado e com alto teor de K, a necessidade de se fazer preparo profundo, visando minimizar os efeitos da deficiência hídrica, e avaliar a contribuição da adubação potássica na redução destes efeitos.

MATERIAL E MÉTODOS

O primeiro experimento foi instalado de 3 a 7.2.94, com irrigação por aspersão convencional, em um Latossolo Vermelho-Esuro de textura argilosa, na Fazenda Capivara, do Centro Nacional de Pesquisa de Arroz e Feijão (CNPAF), localizada no município de Santo Antônio de Goiás, GO. A análise química do solo apresentou os seguintes resultados: pH = 5,7; Ca²⁺ = 3 cmol/L; Mg²⁺ = 1,3 cmol/L; Al³⁺ = 0,1 cmol/L; P = 3,8 mg/L; e, K⁺ = 130 mg/L. A adubação de plantio foi feita com 13 kg de N/ha; 90 kg de P₂O₅/ha e 4,6 kg de Zn/ha, na forma de sulfato de amônio, superfosfato triplo, e sulfato de zinco, respectivamente. A adubação em cobertura foi feita 65 dias após a emergência das plantas, com 27 kg de N/ha, na forma de sulfato de amônio. A irrigação foi conduzida de maneira que o potencial matricial da água do solo, determinado por meio de tensiómetros instalados a 15 cm de profundidade, não ultrapassasse o valor de -25 kPa, conforme recomendado por Stone et al. (1986).

Foi utilizado o delineamento experimental de blocos ao acaso, no esquema fatorial 3 x 2 x 2 + 2, com quatro repetições. Os tratamentos consistiram da combinação de três doses de K₂O (40, 80 e 120 kg/ha), com dois métodos de aplicação (a. todo na semeadura e b. metade na semeadura e metade 65 dias após) e com duas cultivares (Rio Paranaiba e CNA 6843-1). A Rio Paranaiba é uma cultivar de arroz de sequeiro tradicional, com perfis soltosemabertos e folhas inferiores decumbentes, indicada para cultivo em regiões com risco de ocorrência de déficit hídrico. A CNA 6843-1 é de sequeiro favorecido, com perfis semicompactos, folhas mais curtas e mais eretas, indicada para cultivo em regiões com baixa ocorrência de déficit hídrico ou sob irrigação por aspersão. Foram adicionados, como testemunhas, dois tratamentos sem K, um com cada cultivar. As cultivares foram semeadas.
no espaçamento de 0,50 m, utilizando-se 70 sementes por metro. As parcelas tinham área total de 14 m² (3,5 m x 4 m) e área útil de 7,5 m² (2,5 m x 3 m). O experimento foi repetido em quatro situações distintas, resultantes da combinação de duas condições hídricas (sem e com estresse) e duas profundidades de aração (profunda, 30-35 cm, e superficial, 10-15 cm). A aração foi feita com arado de aivecas, seguida de gradagem. O estresse hídrico foi obtido pela supressão da irrigação durante o período compreendido entre 73 e 91 dias após a emergência das plantas. Nos tratamentos sem estresse, a cultura recebeu um total de 937 mm de água, sendo 307,8 mm provenientes da irrigação, e o restante, da chuva. Nos experimentos com estresse, a cultura recebeu 92 mm de água a menos.

Por ocasião da floração, foi determinada, nos tratamentos sem estresse hídrico, a resistência do solo à penetração, mediante o uso de um penetrômetro de impacto modelo IAA/PLANALSUCAR - Stolf, conforme descrito por Stolf et al. (1983). Os dados obtidos com o penetrômetro foram transformados em resistência do solo pelo uso da fórmula proposta por Stolf (1991), adaptada para expressão do resultado em kPa.

\[R = 549,2 + 675,7 \cdot N \]

onde:

- \(R \) = resistência do solo, em kPa,
- \(N \) = número de impactos/dm.

Para determinação da duração da área foliar, foram feitas onze amostragens de perfilhos, nos tratamentos sem estresse. Em cada uma delas coletavam-se dez perfilhos por tratamento. Determinou-se a área foliar com medidor de área marca LI-COR, modelo LI 3000. O índice de área foliar (L) foi obtido pela multiplicação da área foliar média de um perfilho, em m², pelo número de perfilhos/m². A curva de L em função do tempo (t) foi ajustada pela seguinte equação (Buttery, 1969):

\[L = ae^{(bt+ct^2)} \]

Os coeficientes foram estimados pela análise de regressão, após transformação da equação para a forma logarítmica. A duração da área foliar, expressa em dias, foi obtida pela integração da curva de L em função do tempo.

Para o estudo da dinâmica do K no solo, foram instalados extratores de solução do solo junto às linhas de plantas, nos tratamentos sem estresse hídrico, com aplicação de 120 kg de K₂O/ha, ou sem parcelamento e com aração profunda ou superficial. A concentração de K na solução foi determinada dos 79 aos 86 dias e dos 94 aos 107 dias após a emergência (DAE). O fluxo de massa do K (qK), nos períodos considerados, a 60 cm de profundidade, foi estimado pela equação apresentada por Reichardt (1985), adaptada para expressão do resultado em kg/ha.

\[qK = 10.000 \cdot q_cK \]

onde:

\(q = \) fluxo de água, em mm, e
\(cK = \) concentração média de K na solução do solo, em g/cm³.

A quantidade total de K lixiviado é calculada integrando-se os valores parciais diários de qK ao longo do tempo.

O fluxo de água a 60 cm foi calculado aplicando-se a expressão geral de conservação de massa, conforme Reichardt (1985):

\[q = ETm + ES - \Delta A - P - I, \]

onde:

\(ETm = \) evapotranspiração máxima, em mm;
\(ES = \) escoamento superficial, em mm;
\(\Delta A = \) variação no armazenamento de água na camada de solo considerada, em mm;
\(P = \) precipitação, em mm, e
\(I = \) irrigação, em mm.

A precipitação e a irrigação foram medidas por pluviômetros instalados na área experimental. Para o cálculo da ETm, utilizaram-se os dados de evaporação do tanque Classe A, os valores do coeficiente de tanque apresentados por Doorenbos & Kassam (1979), e os valores de coeficientes da cultura do arroz de sequeiro, determinados por Steinmetz (1986). O escoamento superficial foi desprezado porque a área era plana. O armazenamento de água no perfil do solo foi calculado integrando-se os valores de conteúdo de água até 60 cm de profundidade. A umidade do solo foi determinada gravimetricamente, coletando-se amostras de solo em camadas de 15 cm.

Durante o período de estresse hídrico, o consumo total de água foi determinado pela diferença entre o armazenamento de água medido no início e no final do período. A colheita foi realizada em 16.6.94.

O segundo experimento foi instalado em 6 e 7.2.95, no mesmo local e com o mesmo delineamento experimental, o mesmo manejo da irrigação, a mesma adubação e os mesmos tratos culturais do anterior. Devido ao alongamento do ciclo das culti veiras nesse ano, o estresse hídrico foi imposto dos 89 aos 111 dias após a emergência. Nos tratamentos sem estresse, a cultura recebeu um total de 796,5 mm, sendo 171,1 mm provenientes da irrigação, e o restante, da chuva. Nos experimentos com estresse
hídrico, a cultura recebeu 63,0 mm de água a menos. A concentração de K na solução foi determinada dos 53 aos 95 DAE.

A resistência do solo à penetração, a quantidade de K lixiviada e o consumo de água durante o período de estresse hídrico foram determinados como no primeiro experimento. Por ocasião da floração, foram determinados, em todos os tratamentos, o índice de área foliar, o peso da matéria seca da parte aérea, o teor de K nas plantas e a quantidade de K absorvida. Após a colheita, foi feita a análise química do solo nas parcelas que tiveram preparo profundo e nas com preparo superficial. A colheita foi realizada em 30.6.95.

RESULTADOS E DISCUSSÃO

A análise conjunta dos experimentos conduzidos nas quatro situações (combinações de aração profunda e superficial com presença e ausência de estresse hídrico) e nos dois anos mostrou efeitos significativos da interação profundidade de aração x estresse hídrico x cultivar sobre o número de panículas/m² e o de grãos por panícula. Com relação ao peso de 100 grãos, houve efeito significativo da interação estresse hídrico x cultivar.

Entre os componentes da produtividade, o número de grãos por panícula foi o mais afetado pelo estresse hídrico (Tabela 1), tendo sofrido reduções de 55% a 86%, dependendo do tratamento. Isto ocorreu porque o estresse foi imposto durante a fase reprodutiva, causando aumento da esterilidade das espiguetas, o que implica decréscimo do número de grãos formados. O número de panículas também foi reduzido, porque, embora ele tenha sido definido na planta antes do estresse, a exsereção das panículas foi prejudicada pela deficiência hídrica. Como o estresse não se prolongou até o estádio de enchimento dos grãos, o peso dos grãos foi pouco afetado por ele, especialmente no caso da cultivar CNA 6843-1, de ciclo um pouco maior.

A profundidade de aração afetou principalmente o número de grãos cheios por panícula. A maior concentração de nutrientes na camada superficial (Tabela 3), após dois anos de aração superficial, deu ter contribuído para o maior desenvolvimento das plantas, com a consequente maior produção de matéria seca (Tabela 2), resultando em maior número de grãos cheios por panícula neste tratamento, em comparação com a aração profunda.

Devido aos efeitos do estresse hídrico sobre seus componentes, a produtividade do arroz foi menor sob estresse, independentemente da cultivar e da profundidade de aração (Tabela 1). A cultivar CNA 6843-1, por ser de sequeiro favorecido, foi mais afetada pelo estresse hídrico do que a 'Rio Paranaiba', de sequeiro tradicional. A produtividade foi maior com aração superficial em relação à profunda, sendo o número de grãos por panícula o componente

TABELA 1. Produtividade das cultivares de arroz Rio Paranaiba e CNA 6843-1 e seus componentes, na ausência e na presença de estresse hídrico, em duas profundidades de aração (médias de dois anos).

<table>
<thead>
<tr>
<th>Aração</th>
<th>Sem estresse</th>
<th>Com estresse</th>
</tr>
</thead>
<tbody>
<tr>
<td>R.Paranaiba</td>
<td>CNA 6843-1</td>
<td>R.Paranaiba</td>
</tr>
<tr>
<td>Profunda</td>
<td>152,2Aa</td>
<td>206,8Ab</td>
</tr>
<tr>
<td>Superficial</td>
<td>142,9Aa</td>
<td>226,8Aa</td>
</tr>
<tr>
<td>Profunda</td>
<td>129,8Ab</td>
<td>103,9Ab</td>
</tr>
<tr>
<td>Superficial</td>
<td>141,6Aa</td>
<td>126,8Aa</td>
</tr>
<tr>
<td>Peso de 100 grãos (g)</td>
<td>3,24Aa</td>
<td>2,08Aa</td>
</tr>
<tr>
<td>Superficial</td>
<td>3,29Aa</td>
<td>2,13Aa</td>
</tr>
<tr>
<td>Produtividade (kg/ha)</td>
<td>3732Ab</td>
<td>1846Ab</td>
</tr>
<tr>
<td>Superficial</td>
<td>4441Aa</td>
<td>3631Aa</td>
</tr>
</tbody>
</table>

1 Valores seguidos pela mesma letra não diferem significativamente, a 5% de probabilidade, pelo teste de Tukey. Letras minúsculas, para comparação na vertical, e maiúsculas, para comparação de níveis de estresse hídrico dentro de cultivares.
TABELA 2. Duração da área foliar (médias do primeiro ano), índice de área foliar e produção de matéria seca (médias do segundo ano) das cultivares de arroz Rio Paranaíba e CNA 6843-1, na ausência e na presença de estresse hídrico, em duas profundidades de aração.

<table>
<thead>
<tr>
<th>Aração</th>
<th>Sem estresse</th>
<th>Com estresse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R.Paranaíba</td>
<td>CNA 6843-1</td>
</tr>
<tr>
<td>Profunda</td>
<td>169,6a</td>
<td>139,2a</td>
</tr>
<tr>
<td>Superficial</td>
<td>151,1a</td>
<td>144,8a</td>
</tr>
</tbody>
</table>

Duração da área foliar (dia)

<table>
<thead>
<tr>
<th>Aração</th>
<th>Índice de área foliar (m²/m²)</th>
<th>Produção de matéria seca (g/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Profunda</td>
<td>Superficial</td>
</tr>
<tr>
<td>Profunda</td>
<td>2,6Ab</td>
<td>1,3Ab</td>
</tr>
<tr>
<td>Superficial</td>
<td>3,1Aa</td>
<td>2,4Aa</td>
</tr>
<tr>
<td>Profunda</td>
<td>768,0Ab</td>
<td>252,0Ab</td>
</tr>
<tr>
<td>Superficial</td>
<td>916,5Aa</td>
<td>535,4Aa</td>
</tr>
</tbody>
</table>

1 Valores seguidos pela mesma letra não diferem significativamente, a 5% de probabilidade, pelo teste de Tukey. Letras minúsculas, para comparação na vertical, e maiúsculas, para comparação de níveis de estresse hídrico dentro de cultivares.

TABELA 3. Resultado da análise química do solo da área experimental, após a colheita do segundo cultivo (médias de 112 amostras).

<table>
<thead>
<tr>
<th>Aração</th>
<th>Profundidade do solo (cm)</th>
<th>pH</th>
<th>Ca²⁺</th>
<th>Mg²⁺</th>
<th>P</th>
<th>K⁺</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>cmol/L</td>
<td>mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profunda</td>
<td>0-15</td>
<td>5,5</td>
<td>1,3</td>
<td>1,1</td>
<td>2,9</td>
<td>81</td>
<td>3,6</td>
</tr>
<tr>
<td></td>
<td>15-30</td>
<td>5,6</td>
<td>1,4</td>
<td>0,6</td>
<td>2,4</td>
<td>86</td>
<td>2,7</td>
</tr>
<tr>
<td></td>
<td>30-45</td>
<td>5,6</td>
<td>1,0</td>
<td>0,6</td>
<td>0,5</td>
<td>74</td>
<td>1,0</td>
</tr>
<tr>
<td>Superficial</td>
<td>0-15</td>
<td>5,6</td>
<td>2,3</td>
<td>1,1</td>
<td>4,2</td>
<td>88</td>
<td>4,2</td>
</tr>
<tr>
<td></td>
<td>15-30</td>
<td>5,6</td>
<td>1,4</td>
<td>0,9</td>
<td>0,8</td>
<td>78</td>
<td>1,6</td>
</tr>
<tr>
<td></td>
<td>30-45</td>
<td>5,6</td>
<td>1,0</td>
<td>0,8</td>
<td>0,3</td>
<td>67</td>
<td>0,6</td>
</tr>
</tbody>
</table>

da produtividade que mais contribuiu para que isto ocorresse.

Não houve impedimento físico (camada compactada) ao desenvolvimento das raízes, como pode ser verificado pela resistência do solo à penetração (Figs. 1 e 2) nos dois anos de condução dos experimentos. A resistência à penetração variou pouco entre os tratamentos de aração, e em nenhuma profundidade amostrada foi atingido o valor de 2.500 kPa. Khalilian et al. (1988) observaram que valores até este limite não afetaram a produtividade de soja. Rosolem et al. (1992) verificaram que em condições de ausência de estresse hídrico severo houve crescimento de raízes do trigo em valores de resistência à penetração da ordem de 4.500 kPa.

No primeiro ano, no fim do período de estresse, a umidade média à base de volume na camada de 0-15 cm de profundidade foi igual a 24,3%, tanto nos tratamentos com aração profunda como nos com aração superficial. Esta umidade, na curva de retenção da água do solo, correspondeu ao potencial matricial de -470 kPa. No segundo ano também não houve diferença entre as profundidades de aração quanto ao teor de umidade ao final do período de estresse, que foi igual a 23,8%, correspondendo a -560 kPa.

Como a resistência à penetração e a umidade do solo não variaram com as profundidades de aração, as maiores produtividades obtidas com aração superficial podem ser atribuídas à maior exploração...
da camada superficial do solo mais fértil (Tabela 3), através da maior concentração de raízes nas entrelaçadas, como observado em relação ao trigo por Rosolem et al. (1992), e, no tocante à soja, por Ramos & Dedecek (1979). A cultivar de sequeiro favorecido, CNA 6843-1, por ter menor densidade radicular (Stone & Pereira, 1994), apresentou maior redução na produtividade com aumento na profundidade de aração. Ellis & Howse (1980/81) observaram que o preparo superficial concentra P e K perto da superfície do solo em comparação com a distribuição mais uniforme através da camada arada, causada pela inversão do solo na aração profunda. De fato, Silveira et al. (1994) verificaram que o pH e os teores de Ca + Mg, P e K nas camadas de solo de 0-10 cm e 10-20 cm de profundidade foram maiores com aração feita a 15 cm em relação à feita a 30 cm. A análise química do solo (Tabela 3), feita após a colheita do segundo cultivo, confirma a maior concentração de nutrientes na camada de 0-15 cm de profundidade quando foi feita a aração superficial, em comparação com a aração profunda. Isto se refletiu no maior teor de K nas plantas nos tratamentos com aração superficial (Tabela 4). Como nestes tratamentos houve também maior produção de matéria seca, isto implicou maior quantidade de K absorvida.

Os componentes da produtividade, nos dois anos de condução do experimento, não foram afetados significativamente pelas doses e pelo parcelamento de K. Com relação à produtividade, entretanto, houve efeito significativo da interação estresse hídrico x cultivar x adubação. A cultivar Rio Paranaiba, na presença de estresse hídrico, produziu mais quanto maior foi a dose de K aplicada (Fig. 3). A ação do K na redução dos efeitos da deficiência hídrica foi observada por vários pesquisadores (Haeder, 1971; Hofner, 1971; Neiva, 1977). No que respeita à cul-

TABELA 4. Teor e quantidade de K absorvida pelas cultivares de arroz Rio Paranaiba e CNA 6843-1, na ausência e na presença de estresse hídrico, em duas profundidades de aração (médias do segundo ano).¹

<table>
<thead>
<tr>
<th>Aração</th>
<th>Sem estresse</th>
<th>Com estresse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R. Paranaiba</td>
<td>CNA 6843-1</td>
</tr>
<tr>
<td>Profunda</td>
<td>1,2Ab</td>
<td>1,2Ab</td>
</tr>
<tr>
<td>Superficial</td>
<td>1,4Ab</td>
<td>1,4Aa</td>
</tr>
<tr>
<td>Quantidade de K absorvida (kg/ha)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profunda</td>
<td>92,2Ab</td>
<td>31,2Ab</td>
</tr>
<tr>
<td>Superficial</td>
<td>131,0Aa</td>
<td>73,9Aa</td>
</tr>
</tbody>
</table>

¹ Valores seguidos pela mesma letra não diferem significativamente, a 5% de probabilidade, pelo teste de Tukey. Letras minúsculas para comparação na vertical, e maiúsculas, para comparação de níveis de estresse hídrico dentro de cultivares.

FIG. 3. Produtividade da cultivar de arroz Rio Paranaiba, sob estresse hídrico, em função das doses de potássio estudadas.

CNA 6843-1 isto não ocorreu, porque o nível de estresse foi muito severo para ela, por ser de sequeiro favorecido. Observou-se, entretanto, pou- co efeito do K sobre o consumo de água pelo arroz, em condições de estresse hídrico (Tabela 5), apesar de, no segundo ano do experimento, ter havido uma tendência de o consumo ser maior com a dose de 120 kg de K₂O/ha em relação aos tratamentos sem K. Também houve tendência de o consumo de água ser maior com aração superficial, provavelmente em decorrência do maior índice de área foliar.

Na ausência de estresse hídrico não houve efeito significativo da adubação sobre a produtividade (Tabela 6). Isto ocorreu provavelmente por causa do teor inicial de K no solo. Segundo Lopes (1984), resposta ao uso de fertilizantes potássicos em solos de cerrado não é freqüente. De acordo com El-Swaify et al. (1985), em solos com níveis moderados de K trocável, raramente obtém-se resposta a

TABELA 5. Consumo de água da cultivar de arroz Rio Paranaiba, nos períodos de estresse hídrico, compreendidos entre 73 e 91 dias (primeiro ano) e 89 e 111 dias (segundo ano) após a emergência, em diferentes tratamentos.

<table>
<thead>
<tr>
<th>Aração</th>
<th>Tratamento de K¹</th>
<th>Consumo de água (kg de K₂O/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1º ano</td>
</tr>
<tr>
<td>Profunda</td>
<td>0</td>
<td>68,4</td>
</tr>
<tr>
<td></td>
<td>120 SP</td>
<td>73,4</td>
</tr>
<tr>
<td></td>
<td>120 CP</td>
<td>66,0</td>
</tr>
<tr>
<td>Superficial</td>
<td>0</td>
<td>73,1</td>
</tr>
<tr>
<td></td>
<td>120 SP</td>
<td>74,8</td>
</tr>
<tr>
<td></td>
<td>120 CP</td>
<td>71,4</td>
</tr>
</tbody>
</table>

¹ SP = sem parcelamento; CP = com parcelamento.
fertilizantes potássicos. Em nenhuma das combinações consideradas de tratamentos de estresse hídrico e cultuvares houve efeito significativo do parcelamento da adubação potássica.

A concentração de K na solução do solo (Tabela 7), nos dois anos de condução do experimento, foi da mesma ordem de magnitude dos valores observados por Moraes (1991) no mesmo tipo de solo. Ela variou com a profundidade de aração e com o parcelamento da adubação, mas sem nenhuma tendência específica. Tanto no primeiro como no segundo ano, o fluxo de água (Tabelas 8 e 9), nos períodos considerados, foi descendente (sinal negativo), indicando ocorrência de drenagem profunda e, portanto, lixiviação de K. No primeiro ano houve tendência de essa drenagem ser maior com aração profunda, mas no segundo ano isto não ocorreu. A quantidade de K lixiviada também variou com a profundidade de aração e com o parcelamento da adubação (Tabela 10), sem apresentar uma tendência.

Pela Tabela 10, calcula-se que a média da quantidade de K lixiviada no primeiro ano foi de 0,141 kg/dia/ha. Sendo o ciclo da cultura igual a 129 dias, isto resultaria em uma perda total de K de 18,2 kg/ha. No segundo ano, a quantidade média lixiviada foi igual a 0,124 kg/ha, o que, para um ciclo de 143 dias, resultaria na perda de 17,7 kg de K/ha. Esses valores correspondem a 21,9 kg e 21,3 kg de K₂O/ha, respectivamente, o que representariam perdas de 18,2% e 17,8% em relação à dose de 120 kg de K₂O/ha aplicada. Esses valores estão abaixo dos considerados como representativos da região dos cerrados pela Associação Brasileira para Pesquisa da Patota e do Fosfato (1990), que vêem de 37% a 48% do K aplicado. Provavelmente, os menores valores observados são devidos à época de implantação dos experimentos, pois o maior volume de precipitação ocorre de novembro a janeiro. Isto pode explicar a falta de resposta ao parcelamento da adubação potássica.
TABELA 8. Precipitação (P), irrigação (I), evapotranspiração máxima (ETm), variação do armazenamento de água (ΔA) e fluxo de água (q) a 60 cm, nos tratamentos sem estresse hídrico, com aplicação de 120 kg de K₂O/ha, sem e com parcelamento, sob duas profundidades de aração, em intervalos de dias após a emergência (DAE) (primeiro ano).

<table>
<thead>
<tr>
<th>DAE</th>
<th>P</th>
<th>I</th>
<th>ETm</th>
<th>Aração</th>
<th>Tratamentos de K<sup>1</sup></th>
<th>ΔA</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td></td>
<td></td>
<td></td>
<td>(kg de K₂O/ha)</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>76-86</td>
<td>0</td>
<td>33,8</td>
<td>42,3</td>
<td>Profunda</td>
<td>120 SP</td>
<td>31,7</td>
<td>-23,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120 CP</td>
<td>35,9</td>
<td>-27,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Superficial</td>
<td>120 SP</td>
<td>28,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120 CP</td>
<td>17,1</td>
</tr>
<tr>
<td>94-107</td>
<td>0</td>
<td>53,9</td>
<td>64,5</td>
<td>Profunda</td>
<td>120 SP</td>
<td>43,9</td>
<td>-33,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120 CP</td>
<td>30,2</td>
<td>-19,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Superficial</td>
<td>120 SP</td>
<td>34,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120 CP</td>
<td>22,2</td>
</tr>
</tbody>
</table>

¹ SP = sem parcelamento; CP = com parcelamento.

TABELA 9. Precipitação (P), irrigação (I), evapotranspiração máxima (ETm), variação do armazenamento de água (ΔA) e fluxo de água (q) a 60 cm, nos tratamentos sem estresse hídrico, com aplicação de 120 kg de K₂O/ha, sem e com parcelamento, sob duas profundidades de aração, em intervalos de dias após a emergência (DAE) (segundo ano).

<table>
<thead>
<tr>
<th>DAE</th>
<th>P</th>
<th>I</th>
<th>ETm</th>
<th>Aração</th>
<th>Tratamentos de K<sup>1</sup></th>
<th>ΔA</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td></td>
<td></td>
<td></td>
<td>(kg de K₂O/ha)</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>53-67</td>
<td>80,9</td>
<td>0</td>
<td>55,4</td>
<td>Profunda</td>
<td>120 SP</td>
<td>5,4</td>
<td>-30,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120 CP</td>
<td>9,1</td>
<td>-34,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Superficial</td>
<td>120 SP</td>
<td>6,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120 CP</td>
<td>0,8</td>
</tr>
<tr>
<td>68-74</td>
<td>33,8</td>
<td>23,6</td>
<td>32,9</td>
<td>Profunda</td>
<td>120 SP</td>
<td>-17,3</td>
<td>-7,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120 CP</td>
<td>-15,2</td>
<td>-9,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Superficial</td>
<td>120 SP</td>
<td>-11,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120 CP</td>
<td>-6,9</td>
</tr>
<tr>
<td>75-81</td>
<td>0</td>
<td>18,5</td>
<td>26,0</td>
<td>Profunda</td>
<td>120 SP</td>
<td>13,8</td>
<td>-6,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120 CP</td>
<td>16,1</td>
<td>-8,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Superficial</td>
<td>120 SP</td>
<td>10,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120 CP</td>
<td>15,6</td>
</tr>
<tr>
<td>82-95</td>
<td>64,8</td>
<td>20,8</td>
<td>59,0</td>
<td>Profunda</td>
<td>120 SP</td>
<td>-2,1</td>
<td>-24,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120 CP</td>
<td>-20,0</td>
<td>-6,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Superficial</td>
<td>120 SP</td>
<td>-9,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120 CP</td>
<td>-1,5</td>
</tr>
</tbody>
</table>

¹ SP = sem parcelamento; CP = com parcelamento.
TABELA 10. Quantidade média de K lixiviada em intervalos de dias após a emergência (DAE), nos tratamentos sem estresse hídrico, com aplicação de 120 kg de K₂O/ha, sem e com parcelamento, sob duas profundidades de aração.

<table>
<thead>
<tr>
<th>DAE</th>
<th>Aração profunda</th>
<th>Aração superficial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>120 SP</td>
<td>120 CP</td>
</tr>
<tr>
<td>1º ano</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-86</td>
<td>1,1</td>
<td>2,4</td>
</tr>
<tr>
<td>94-107</td>
<td>2,3</td>
<td>1,7</td>
</tr>
<tr>
<td>2º ano</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53-67</td>
<td>2,7</td>
<td>3,3</td>
</tr>
<tr>
<td>68-74</td>
<td>0,4</td>
<td>0,8</td>
</tr>
<tr>
<td>75-81</td>
<td>0,3</td>
<td>0,3</td>
</tr>
<tr>
<td>82-95</td>
<td>3,2</td>
<td>0,6</td>
</tr>
</tbody>
</table>

1 120 SP e 120 CP = 120 kg de K₂O/ha sem parcelamento e com parcelamento, respectivamente.

CONCLUSÕES

1. Na ausência de camada compactada no perfil do solo, independentemente das condições hídricas do solo, a produtividade do arroz é maior quando a aração é feita a 10-15 cm de profundidade, em comparação com a feita a 30-35 cm.

2. A aração superficial propicia maior concentração de nutrientes na camada de solo de 0-15 cm de profundidade do que a aração profunda.

3. Em solos com alto teor de K, sob condições de estresse hídrico moderado, a adubação potássica aumenta a produtividade do arroz, mas não a afeta significativamente na ausência de estresse.

4. A quantidade de K lixiviada durante o ciclo do arroz é reduzida quando a semeadura é feita após o período mais chuvoso, o que ocasiona falta de resposta ao parcelamento da adubação potássica.

REFERENCIAS

