BRAZILIAN APHIDOIDEA: I. KEY TO FAMILIES, SUBFAMILIES AND ACCOUNT OF THE PHYLLOXERIDAE\(^1\)

CLAUDIO L. COSTA\(^2\), V.F. EASTOP • ROGER L. BLACKMAN\(^3\)

ABSTRACT - Keys are provided for the identification of the families and subfamilies of Aphidoidea occurring in Brazil. Host plant and geographical distribution data of Phylloxeridae are also provided. The keys are illustrated by 67 line drawings. The check list of aphids occurring in Brazil indicates the presumed origin of each species. The origin of the Brazilian fauna is discussed.

Index terms: Brazilian Aphids, identification Keys, host plants, check list of Genera and Species, distribution.

AFÍDEOS BRASILEIROS: I. CHAVES PARA FAMÍLIAS, SUBFAMÍLIAS E UMA CONTRIBUIÇÃO SOBRE PHYLLOXERIDAE

RESUMO - São apresentadas chaves para identificação de famílias e subfamílias de afídeos (Hemiptera, Aphidoidea) que ocorrem no Brasil. Apresentam-se também dados sobre plantas hospedeiras e sobre a distribuição geográfica da família Phylloxeridae. As chaves de identificação são ilustradas com 67 desenhos, e a lista classificada das espécies de afídeos que ocorrem no Brasil inclui a presumível origem de cada uma delas. Discute-se, outrossim, a origem da fauna brasileira.

Termos para indexação: Aphidoidea, afídeos brasileiros, chaves para identificação, hospedeiros, distribuição geográfica.

INTRODUCTION

The works of Lima (1923) and of Moreira (1925) contain the first published reviews about the aphid fauna of Brazil. Oliveira et al. (1977) gave references to a number of early and little known papers on Brazilian aphids and listed species trapped in the state of Espírito Santo. Lima (1928, 1936, 1942), Silva et al. (1968), Bergamin (1957) and Costa et al. (1972) also listed species occurring in the country and provided some information on their host plants.

The importance of some aphid species as vectors of plant viruses has also been pointed out (Costa 1957, Costa et al. 1972). Worldwide, aphids are known to transmit more than 200 plant virus diseases. The effects of predators and parasites on the populations of aphid species, on vegetables and on fruit trees have been studied in the State of Paraná (Schmitt 1974, Bartoszczek 1976a, 1976b, Leal et al. 1976, Lark & Smith 1976, Pereira & Smith 1976a, 1976b, Pimenta 1976, Zúñiga-Salinas 1982).

Information on individual species or groups of pest species of different crops is available, especially from the southern part of the country, but a comprehensive systematic study of Brazilian species is lacking. Bertel's (1973) account of aphid

\(^1\) Accepted for publication on August 3, 1992.

\(^2\) Dep. of Fitopatol., Univ. de Brasília, CEP 70910 Brasília, DF. Fellow of CNPq.

\(^3\) Department of Entomology, The Natural History Museum, Cromwell Road, London, SW7 5BD, England.
species from Rio Grande do Sul is of limited help for the identification of Brazilian aphids, as the species mentioned in the text do not correspond to the keys which were translated with some errors from Blanchard's (1939) excellent revision of Argentinian aphids.

The aim is to provide a means of identifying the aphid species from Brazil and to give information on host plants, geographical distribution and synonymy. This paper contains a key to the families and subfamilies and an account of the Phyloxeridae. Keys to Brazilian genera and species belonging to the other subfamilies have been prepared for publication in accounts of those groups.

Where possible, several different characters are given to discriminate similar species in the keys. This facilitates the identification of incomplete or damaged specimens from trap catches and food contaminants. These mini-descriptions also reduce the risk of confusing previously overlooked or newly introduced species with those already known in Brazil. The keys have been structured to facilitate the addition of further species.

The specimens studied are deposited in the British Museum (Natural History) aphid collection and in that of C.L. Costa in Brasília. Aphids have been seen from the States of Bahia, Ceará, Distrito Federal (Brasília), Espírito Santo, Goiás, Minas Gerais, Maranhão, Mato Grosso, Pará, Paraná, Pernambuco, Rio de Janeiro, Rio Grande do Norte, Rio Grande do Sul, Santa Catarina and São Paulo.

The classification system adopted is that used by Eastop (1977) which recognized three families of Aphidoidea: Aphididae, Adelgidae and Phyloxeridae. Species belonging to 8 out of the 10 subfamilies of Aphididae are known in Brazil; none belonging to Pterocommatinae, Phloemyzinae or to Adelgidae have been seen. The wide-spread species of Phyloxeridae, Viteus vitifoliae, is recorded from Brazil.

The nomenclature adopted is that of Eastop & Hille Ris Lambers (1976) in their “Survey of the World Aphids” hereafter referred to as “Survey”.

Of the 115 species of aphids known from Brazil, 18 are native South or Central American species, 5 others also occur in North America but probably occur here naturally. Most if not all the others were probably introduced by man on cultivated plants or weeds. Of these 92 introduced species 15 probably originated from North America, 42 from the Western Palaearctic region including the Mediterranean sub-region, 3 from subtropical areas adjacent to the Western Palaearctic, 5 from South Western Asia, 10 from southern Asia and 12 from the Eastern Palaearctic region. The remaining 5 species are of uncertain origin, being now widespread and without close relatives of a restricted distribution, and living on plants occurring naturally in several geographical regions.

The distribution of species within subfamily groups, including World and Brazilian Fauna, is given in Table 1. The 115 species known to occur in Brazil constitute only 2.8% of the known world fauna.

The information for each collection includes: State, locality, host plant or trap, date and (collector - leg).

Full synonymy is not given as it is readily available in the “Survey”. Only synonyms that have been used in Neotropical region literature are given.
TABELA 1. Distribution of species in the subfamily groups.

<table>
<thead>
<tr>
<th>Family</th>
<th>Subfamily</th>
<th>Brazilian fauna</th>
<th>World Fauna</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of genera</td>
<td>Nº</td>
<td>%</td>
</tr>
<tr>
<td>PHYLLOXERIDAE</td>
<td>1</td>
<td>1</td>
<td>67</td>
</tr>
<tr>
<td>ADELGIDAE</td>
<td>0</td>
<td>0</td>
<td>48</td>
</tr>
<tr>
<td>APHIDIDAE</td>
<td>54</td>
<td>114</td>
<td>3937</td>
</tr>
<tr>
<td></td>
<td>Lachniniae</td>
<td>3</td>
<td>346</td>
</tr>
<tr>
<td></td>
<td>Chaitophorinae</td>
<td>1</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Drepanosiphinae</td>
<td>5</td>
<td>407</td>
</tr>
<tr>
<td></td>
<td>Pterocommatinae</td>
<td>0</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Aphidinae</td>
<td>35</td>
<td>2412</td>
</tr>
<tr>
<td></td>
<td>Aphidini</td>
<td>(6)</td>
<td>(24)</td>
</tr>
<tr>
<td></td>
<td>Aphidina</td>
<td>(2)</td>
<td>(17)</td>
</tr>
<tr>
<td></td>
<td>Rhipalosiphina</td>
<td>(4)</td>
<td>(7)</td>
</tr>
<tr>
<td></td>
<td>Macrosiphini</td>
<td>(29)</td>
<td>(60)</td>
</tr>
<tr>
<td></td>
<td>Anociniae</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Greenidiniae</td>
<td>1</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>Phloeomyzinae</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Hormaphidiniae</td>
<td>1</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>Pemphiginae</td>
<td>7</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>55</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4052</td>
</tr>
</tbody>
</table>

CLASSIFIED LIST OF BRAZILIAN APHIDS

The presumed origin of each species is indicated in the list below, by * = native South or Central American, EP = Eastern Palaearctic, N = North American, Or = Oriental; SWA = South West Asian; WP = Western Palaearctic; WP, M = Mediterranean region.

PHYLLOXERIDAE

Phylloxerini

Genus Viteus Shimer, 1867

Viteus vitifolii (Fitch, 1855)

APHIDIDAE

Lachniniae

Cinarini

Genus Cinara Curtis, 1835

Cinara (Cinarella) maritima* (Dufour, 1833)

Cinara (Cinarella) piniformosana* (Takahashi, 1923)

Cinara (Cupressobium) tajafilina* (del Guercio, 1909)

Genus Eulachnus del Guercio, 1909

Eulachnus rileyi (Wilson, 1911)

Lachnini
Genus *Tuberolachnus* Mordvilko, 1909
Tuberolachnus salignum (Gmelin, 1790)

Chaitophorinae

Siphini

Genus *Sipa* Passerini, 1860
Sipa flava (Forbes, 1884)

Drepanosiphinae (=Callaphidinae)

Neophyllaphidini

Genus *Neophyllaphis* Takahashi, 1920

Subgenus *Chileaphis* Essig, 1954
Neophyllaphis (Chileaphis) ? podocarpini Carrillo, 1980

Lizeriini

Genus *Lizerius* Blanchard 1923
Lizerius acunai (Holman, 1974)
Lizerius melanocallis (Qednau, 1974)
Lizerius ocoteae E.E. Blanchard, 1923
Lizerius tuberculatus (E.E. Blanchard, 1939)

Subgenus *Paralizerius* Qednau, 1974
Lizerius (Paralizerius) brasiliensis Qednau, 1974
Lizerius (Paralizerius) cermelii Qednau, 1974
Lizerius (Paralizerius) costai Qednau, 1974
Lizerius (Paralizerius) intermedius Qednau, 1974

Phyllaphidini

Genus *Eucallipterus* Schouteden, 1906
Eucallipterus tiliae (Linnaeus, 1758)

Genus *Myzocallis* Passerini, 1860
Myzocallis castanicola Baker, 1917

Genus *Tuberculatus* Mordvilko, 1984

Subgenus *Tuberculoides* van der Goot, 1915
Tuberculatus (Tuberculoides) annulatus (Hartig, 1841)

Aphidinae

Aphidini

Aphidina

Genus *Aphis* Linnaeus, 1758
Aphis amaranthi Holman, 1974
Aphis coreopsidis (Thomas, 1878)
Aphis craccivora Koch, 1854
Aphis fabae Scopoli, 1763
Aphis fabae solanella Theobald, 1914
Aphis forbesi Wood, 1889
Aphis gossypi Glover, 1877
Aphis illinoisensis Shimer, 1866
Aphis nerii Boyer de Fonscolombe, 1841
Aphis sambuci Linnaeus, 1758
Aphis sedi Kaltenbach, 1843
Aphis spiraecola van der Goot, 1913
Aphis yuccicola Wilson, 1911
Aphis (Protaphis) middletonii Thomas, 1879

Aphis (Protaphis) terricola Rondani, 1847
Genus Toxoptera Koch, 1856
Toxoptera aurantii (Boyer de Fonscolombe, 1907)
Toxoptera citricidus (Kirkaldy, 1907)

Rhopalosiphina
Genus Hysteroneura Davis, 1919
Hysteroneura setariae (Thomas, 1878)
Genus Melanaphis van der Goot, 1917
Melanaphis (Longiunguis) Sacchari (Zehnter, 1897)
Genus Rhopalosiphum Koch, 1854
Rhopalosiphum maidis (Fitch, 1856)
Rhopalosiphum nymphaeae (Linnaeus, 1761)
Rhopalosiphum padi (Linnaeus, 1899)
Rhopalosiphum rufiabdominalis (Sasaki, 1899)
Genus Schizaphis Borner, 1931
Schizaphis graminum (Rondani, 1847) 1852

 Macrosiphini
Genus Acyrthosiphon Mordvilko, 1914
Acyrthosiphon bidenticola Smith, 1960
Acyrthosiphon kondoi Shinji, 1938
Acyrthosiphon malvae (Mosley, 1841)
Acyrthosiphon pisum (Harris, 1776)
Genus Aulacorthum Mordvilko, 1914
Aulacorthum solani (Kaltenbach, 1843)
Aulacorthum (Neomyzus) circumflexus (Buckton, 1876)
Genus Brachycaudus van der Goot, 1913
Brachycaudus helichrysi (Kaltenbach, 1843)
Brachycaudus (Acaudus) persicae (Passerini, 1860)
Brachycaudus (Thuleaphis) rumicicolens (Patch, 1917)
Brachycaudus (Appelia) schwartzi (Borner, 1931)
Genus Brevicoryne van der Goot, 1913
Brevicoryne brassicae (Linnaeus, 1758)
Genus Capitophorus van der Goot, 1913
Capitophorus elaeagni (del Guercio, 1894)
Capitophorus hippocphaes (Walker, 1853)
Capitophorus hippochae javanicus Hille Ris Lamberts
Genus Carolinaia Wilson, 1911
Carolinaia cypri Ainslie, 1915
Genus Cavariella del Guercio, 1911
Cavariella aegopodii (Scopoli, 1763)
Genus Chaetosiphon Mordvilko, 1914
Chaetosiphon (Pentatrichopus) fragaefolii (Cockerell, 1901)
Chaetosiphon (P.) tetrarhodum (Walker, 1849)
Genus Coloradaoa Wilson, 1910
Coloradaoa rufomaculata (Wilson, 1923)
Genus Dysaphis Borner, 1931
Dysaphis apiifolia (Theobald, 1923)
Dysaphis cynarae (Theobald, 1915)
Dysaphis emicus (Mimeur, 1935)
Dysaphis foeniculcus (Tehobald, 1923)

Genus Glabromyzyus Richards, 1960
Glabromyzyus ? howardii (Wilson, 1911)

Genus Hyadaphis Kirkaldy, 1904
Hyadaphis foeniculcus (Passerini, 1860)

Genus Hyperomyzyus Borner, 1933
Hyperomyzyus carduellinus (Theobald, 1915) - old world
subtropics, derived from lactucae
Hyperomyzyus lactucae (Linnaeus, 1768)

Genus Lipaphis Mordvilko, 1928
Lipaphis erysimi (Kaltenbach, 1843) - sub-species
pseudobrassicae Davis, 1911, old world subtropics
derived from erysimi

Genus Macrosiphoniella del Guercio, 1911
Macrosiphoniella sanborni (Gillette, 1908)
Macrosiphoniella tanacetaria bonariensis E.E. Blanchard, 1932
Macrosiphoniella yomogifolii (Shingi, 1924)

Genus Macrosiphum Passerini, 1860
Macrosiphum euphorbiae (Thomas, 1878)
Macrosiphum rosae (Linnaeus, 1758)

Genus Metopolophium Mordvilko, 1914
Metopolophium dirhodum (Walker, 1849)

Genus Microparsus Patch, 1919
Microparsus (Picturaphis) brasiliensis (Moreira, 1925)
Microparsus (Picturaphis) vignaphillus (E.E. Blanchard, 1922)

Genus Myzus Passerini, 1860
Myzus hemerocallis Takahashi, 1921
Myzus nicotianae Blackman, 1987
Myzus ornatus Laing, 1932
Myzus persicae (Sulzer, 1776)

Genus Nasonovia Mordvilko, 1914
Nasonovia ribisnigri (Mosley, 1841)

Genus Neotoxoptera Theobald, 1915
Neotoxoptera formosana (Takahashi, 1921)
Neotoxoptera oliveri (Essig, 1935)

Genus Ovatus van der Goot, 1913
Ovatus crataegarius (Walker, 1850)

Genus Pentalonia Coquerel, 1859
Pentalonia nigronervosa Coquerel, 1859

Genus Pleotrichophorus Borner, 1930
Pleotrichophorus chysanthemi (Theobald, 1920)

Genus Rhodobium Hille Ris Lambers, 1947
Rhodobium porosum (Sanderson, 1900)

Genus Rhopalocepholinus Baker, 1920
Rhopalocepholinus laythiphen (Davidson, 1912)

Genus Sitobion Mordvilko, 1914
Sitobion avenae (Fabricius, 1775)

Sitobion lambersi David, 1956 Or
Sitobion luteum (Buckton, 1876) Or
Sitobion pauliani Remaudiere, 1957 ?Africa
Sitobion ptericolens (Patch, 1919) N
Sitobion salviae (Bartholomew, 1932) *

Genus Uroleucon Mordvilko, 1914
Uroleucon ambrosiae (Thomas, 1878) * or N
Uroleucon lizerianum (E.E. Blanchard, 1922) *
Uroleucon sonchi (Linnaeus, 1767) WP
Uroleucon (Lambersius) erigeronensis (Thomas, 1878) * or N
Uroleucon (Uromelan) compositae (Theobald, 1915) Or

Genus Utamphorophora Knowlton, 1947
Utamphorophora commelinensis (Smith, 1960) *

Anoecciinae
Anoeclini
Genus Anoecia Koch, 1857
Anoecia cornicola (Walsh, 1863) N

Greenideinae
Genus Brasilaphis Mordvilko, 1930
Brasilaphis bondari Mordvilko, 1930 *

Hormaphidinae
Cerataphidini
Genus Cerataphis Lichtenstein, 1882
Cerataphis orchidearum (Westwood, 1879) Or
Cerataphis variabilis HRL, 1953 Or

Pemphiginae
Eriosomatini
Genus Eriosoma (Hausmann, 1802)
Eriosoma lanigerum (Hausmann, 1802) N
Genus Tetrameura Hartig, 1841
Tetrameura (Tetrameura) nigriabdominalis (Sasaki, 1899) EP

Fordini
Genus Asiphonella Theobald, 1923
Asiphonella dactylonii (Theobald, 1923) SWA
Genus Geoica Hart, 1894
Geoica lucifuga (Zehntner, 1897) SW Asia
Genus Geopemphigus Hille Ris Lambers, 1933
Geopemphigus floccosus (Moreira, 1925) *
Genus Smynhurodes Westwood, 1849
Smynhurodes betae Westwood, 1849 WP

Pemphigini
Genus Pemphigus Hartig, 1839
Pemphigus bursarius (Linnaeus, 1758) WP
Pemphigus populitanversus Riley, 1879 N
TAXONOMY OF BRAZILIAN APHIDS

Key to the families and subfamilies of Brazilian aphids

1 (2) All apterae oviparous and pear-shaped, broadest near the front (Fig. 2), with 3-segmented antennae bearing only a single rhinarium (Fig. 1a). Alatae with only 3 oblique veins, all simple, in the forewing, and Cu1 and Cu2 with a common base (Fig. 3), and wings held horizontally in repose. Alatae with 3-segmented antennae, the third segment bearing 2 primary rhinaria (Fig. 3a). Phylloxeridae.

2 (1) Apterae viviparue oval, broadest near the middle across the anterior part of the abdomen (Figs. 1, 4, 5), antennae usually 5-or 6-segmented and all morphs with a primary rhinarium on each of the last two segments (Figs. 4a, 5a, 10, 11, 32, 34, 38, 40, 55, 57). Alatae with 4 oblique veins in the forewing and the media often once (Figs. 7, 13, 35, 37) or twice (Figs. 8, 18) branched, sometimes simple (Fig. 6) Cu 1 and Cu 2 mostly originating individually (Figs. 6-8, 13, 18, 35) but sometimes adjacent or fused at the base (Fig. 37) Aphididae.

3 (4) Siphunculi weakly clavate and with a ring of three subapical hairs and 3 or 4 other hairs placed more proximad (Fig. 9); abdomen bearing a pair of elongate tubercles on the 7th tergite better developed in the immatures than in the alate; antennae 4- or 5-segmented. Brasilaphis (Greenideininae).

4 (3) Siphunculi without hairs (Figs. 1, 4) or some truncate siphunculi bearing a single hair at the very base, or siphunculi flat rings on hairy cones (Figs. 16, 36, 52, 61); siphunculi sometimes absent; abdomen without paired elongate projections posterior to the siphunculi, or if with a pair on the eighth tergite then with lateral pairs of similar tubercles on segments 3, 4, 6 and 7, and cauda strongly knobbed (Lizerius brasiliensis, Fig. 12) and antennae 6-segmented.

5 (10) Terminal process of antennae at least 0.75 but usually as long as or much longer than the base of the last antennal segment (Figs. 1, 4, 10, 11, 14, 46), in borderline cases (Fig. 26) Drepanosiphinae, take either alternative; usually siphunculi and cauda elongate (Figs. 4, 22, 62-64) or siphunculi truncate and cauda knobbed (Figs. 12, 15), sometimes siphunculi short and tapering and cauda rounded (Figs. 19-21).

6 (7) Siphunculi usually elongate (Figs. 1, 4, 20, 22, 63-65), sometimes short and tapering (Figs. 19, 62); terminal process usually more than twice as long as the base of the last antennal segment (Figs. 4, 10, 11); cauda usually elongate (Figs. 4, 22, 62-65), never knobbed, sometimes broadly rounded, or pentagonal or helmet-shaped (Figs. 19, 21); first tarsal segments usually bearing only 2 or 3 hairs (Figs. 23, 24), if with 4 or 5 (Figs. 29, 30) the siphunculi very elongate (Figs. 63, 64), many times longer than their middle diameter. On many plants, particularly herbs Aphidinae.

7 (6) Siphunculi truncate cones, about as long as broad (Figs. 12, 15), cauda knobbed in Brazilian species; terminal process rarely more than twice as long as the base of the last antennal segment (Figs. 14, 26, 46); first tarsal segments bearing 5-7 ventral hairs. (Figs. 27, 28).
8 (9) Antennae 5-segmented (Fig. 46), with terminal process about twice as long as the base of fifth segment. Apterae viviparae common, alatae without dorsal hairs on the first tarsal segments and with the media of the fore-wing twice branched. On Gramineae Sipha (Chaitophorinae).

9 (8) Antennae usually 6-segmented; if apterae viviparae present then terminal process of antennae little if any longer than the base of the last segment. Some species only with alatae viviparae and these usually with a pair of dorsal hairs on the first tarsal segments in addition to the 5-7 ventral hairs (Figs. 27, 28), media of fore-wing once (Fig. 13) or twice branched. Mostly on trees and shrubs Drepanosiphinae in part.

10 (5) Terminal process of antennae usually less than half as long as the base of the last antennal segment (Figs. 5, 17, 25, 32, 34, 38), sometimes relatively longer when the antennae are very short (Figs. 39, 40); cauda broadly rounded (Figs. 5, 36, 45, 52, 61) or knobbed (Figs. 12, 15), never elongate ‘finger-like’; siphunculi either truncate (Figs. 12, 15, 39), ring-like (Fig. 42), on flat hairy cones (Figs. 16, 36, 52, 61) or absent (Figs. 5, 45).

11 (12) Cauda strongly knobbed (Figs. 12, 15), antennae 6-segmented, siphunculi truncate (Figs. 12, 15); alatae with once (Fig. 13) or twice branched media and round or oval, or rarely annular secondary rhinaria and first tarsal segments usually bearing a pair of dorsal hairs in addition to the 5-7 ventral hairs (Fig. 27). Mostly free living on the leaves of trees and shrubs. .. Drepanosiphinae in part.

12 (11) Cauda broadly rounded (Figs. 5, 36, 45, 52, 61, or slightly constricted near the base (Fig. 39); antennae 4- (Fig. 40), 5-(Figs. 38, 46) or 6-segmented (Figs. 5, 32, 34, 57); siphunculi ring-like (Fig. 42), sometimes placed in broad flat hairy cones (Figs. 16, 36, 52, 61), and sometimes absent (Figs. 5, 45). Media of forewing simple (Fig. 6) or once (Figs. 35, 37) or twice (Fig. 18) branched.

13 (14) First tarsal segments with 9 or more ventral hairs (Figs. 51, 54), empodial hairs very short, inconspicuous (Figs. 31, 54); fifth rostral segment distinct from the fourth with an evident suture between them (Figs. 47, 48, 50); forewing usually with the radius arising from near the apex of an elongate pterostigma, media often pale and twice branched (Fig. 18); apterae with large compound eyes (Fig. 56), abdomen without lateral tubercles; antennae 6-segmented and bearing long hairs and round secondary rhinaria (Fig. 32); siphunculi usually on large dark hairy cones (Fig. 16), sometimes little more than sclerotic rings. In South America only known from Coniferae and Salix Lachninae.

14 (13) First tarsal segments with 2-7 ventral hairs and without dorsal hairs (Figs. 41, 58, 59); empodial hairs one third or more as long as the claws (Figs. 33, 41, 58, 59); rostral segments 4 and 5 more or less fused, with the suture between them usually indistinct or absent (Figs. 49, 60) but suture often indicated by a clear area; media of forewing once branched (Fig. 37) or simple (Fig. 6) and the pterostigma often short and thick with the radius arising from about its mid length (Fig. 35); true apterae with only 3-faceted eyes but alatiform apterae may have small compound eyes.
15 (16) Abdomen with large transparent lateral tubercles on segments 1-5 at least and sometimes also on segments 6 and 7; siphunculi on broad flat hairy cones; dorsum usually pigmented (Fig. 36); antennae 6-segmented and bearing long hairs and round or transversely oval rhinaria (Fig. 34); wax glands not evident, not aggregated into plates; media of forewing once branched and pterostigma characteristically broad and dark (Fig. 35); first tarsal segments with 5-7 ventral hairs; rudimentary gonapophyses ill-defined, represented by an irregular row of 10-12 hairs between the genital and anal plates. On the roots of Gramineae, and in temperate climates on the leaves of *Cornus* *Anoeia* (Anoeiinae).

16 (15) Abdomen without large transparent lateral tubercles; siphunculi ring like, small cones (Fig. 61) or absent (Figs. 5, 45); antennae 4- (Fig. 40) or 5- or 6-segmented (Figs. 5, 57) and usually bearing only short hairs (Figs. 51, 57) if the antennal hairs are long then the siphunculi if present are mere sclerotic rings or horse-shoe shaped (Fig. 61) and the abdomen bears evident wax gland plates (Figs. 44, 45, 61); secondary rhinaria often annular (Fig. 38), sometimes round or oval (Fig. 57); first tarsal segments with only 2 (Figs. 41, 59) or 3-4 (Fig. 58) or rarely 5 hairs; rudimentary gonapophyses usually two distinct groups of 5-8 hairs between genital and anal plates.

17 (18) Abdomen with only 6 pairs of spiracles. Siphunculi present as rings, sometimes on small cones and cauda weakly knobbed or rounded. Media of forewing once branched (Fig. 37) and alatae with 5-segmented antennae bearing annular rhinaria on segments III-V (Fig. 38). Femur and trochanter often fused (Fig. 66). Apterae (Fig. 39) often 'aleyrodiform'; head and pronotum fused, and the second tarsal segments bear long dorso-apical capitate hairs, empodial hairs long and slightly expanded at the apex (Fig. 41). On leaves of palms, grasses and orchids *Hormaphidinae*.

18 (17) Abdomen with 7 pairs of spiracles, siphunculi present (Fig. 61) or absent (Figs. 5, 45), cauda rounded. Media of forewing once branched or simple (Fig. 6), if secondary rhinaria annular then antennae 6-segmented, if antennae of alatae are 5-segmented then the secondary rhinaria are round or oval. Trochanter usually separated from femur by a distinct suture (Figs. 5, 67), if not (*Asiphonella*) then siphunculi absent. Apterae (Fig. 5) never aleyrodiform, head and thorax distinct. Tarsal hairs normal, fine pointed (Figs. 58, 59). On roots of angiosperms or in wooly masses on *Rosaceae* *Pemphiginae*.

Family Phyloxeridae

The sole species known in the Brazil is the world-wide "filoxera-da-videira", *Viteus vitifoliae* Fitch, of which all available Brazilian specimens are apterous.

Viteus vitifoliae Fitch, 1855 - Figs. 2-3

Collection data:

Distribution in South and Central America: Argentina.
Plate 1

FIG. 1. Microparsus (Picturaphis) brasiliensis.

A. Alata, Antennal segments 1-4. srh: secondary rhinariaum.

D. Ventral view of subgenital plate (sg), rudimentary gonapophyses (rg) and anal plate (ap).

G. Dorsal view of cauda (ca) and eighth abdominal tergite.
R: rostrum. ph: primary hair. r1-r5: rostral segments 1-5, 4+5 = ultimate rostral segment. sh: subsidiary or secondary hair W: wing. cu: cubitus. m: media. r: radius. pts: pterostigma.
Plate 2

Plate 3
Plate 4
Plate 5

Plate 6

FIG. 47-50. Ultimate rostral segments, 47 Tuberolachnus salignus, 48 Cinara nujafilina, 49 Geopemphigus floccosus. 50-51 Eulachnus sp., 51 first segment of hind tarsus. 52 Tuberolachnus salignus aptera, abdomen. 53-55 Cinara maritimae alata, 53 head, 54 hind tarsus, 55 antennal segments IV-VI. 56 C. nujafilina aptera, head. 57-58 Pemphigus bursarius alate sexupara, 57 antenna, 58 hind tarsus. 59 Geopemphigus floccosus hind tarsus. 60 Geoica lucifuga ultimate rostral segment.
Plate 7
FIG. 61-65. Abdominal dorsum, 61 Eriosoma lanigerum apterous exule, 62 Rhopalosiphum maidis aptera, 63 Chaetosiphon fragaefolii aptera, 64 Uroleucon ambrosiae aptera, 65 Hyperomyzus carduellarus alata, 66 & 67 hind trochanter and femur, 66 Cerataphis orchidearum, 67 Eriosoma lanigerum.
ACKNOWLEDGEMENTS

C.L. Costa is a Research Fellow of Brazilian National Research Council (CNPq) and also owes thanks to the Keeper of Entomology, British Museum (N.H.) for the opportunity to work on their collections, during 1988 with a Post-Doctoral Scholarship from CNPq. V.F. Eastop owes thanks to Padre Jesus Moure for arousing his interest in Brazilian aphids by arranging via the British Council, a visit to Curitiba in 1972; to CNPq for a Visiting Research Fellowship to work in the Departamento de Fitopatologia, IB, Universidade de Brasília from March 1991 and to the trustees of the Natural History Museum, London for a Visiting Research Fellowship from October, 1990. Hérmenes de Freitas Leitão Filho and Condorcet Aranha, Seção de Botânica, Instituto Agronômico, Campinas, and Mariluz Aratújo Granja e Barros, Lacê M. Breyer and José Elias de Paula, Departamento de Botânica, IB, Universidade de Brasília, kindly identified host plants.

REFERENCES

